def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) ####### test 5-moment uniform grids gk_uniform = viscid.load_file(os.path.join(sample_dir, 'sample_gkeyll_uniform_q_*.h5')) plt.figure(figsize=(9, 3)) for i, grid in enumerate(gk_uniform.iter_times(":")): plt.subplot2grid((1, 2), (0, i)) vlt.plot(grid['rho_i'], logscale=True, style='contourf', levels=128) seeds = viscid.Line((-1.2, 0, 0), (1.4, 0, 0), 8) b_lines, _ = viscid.calc_streamlines(grid['b'], seeds, method='euler1', max_length=20.0) vlt.plot2d_lines(b_lines, scalars='#000000', symdir='z', linewidth=1.0) plt.title(grid.format_time('.02f')) vlt.auto_adjust_subplots() plt.suptitle("Uniform Gkeyll Dataset") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() plt.clf() return 0
def default_fluid_callback(i, t, seeds=None, v_field=None, anc_fields=None, grid0=None, grid1=None, streamlines=None, series_fname=None, show=False, **kwargs): from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt _, ax0 = plt.subplots(1, 1) vlt.plot(viscid.magnitude(v_field).atmost_nd(2), ax=ax0) vlt.scatter_2d(seeds, ax=ax0) vlt.streamplot(v_field.atmost_nd(2)) vlt.plot_lines2d(streamlines, ax=ax0) plt.title('{0:8.3f}'.format(t)) if series_fname: plt.savefig('{0}_{1:06d}.png'.format(series_fname, i)) if show: vlt.show() else: plt.close()
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) ####### test 5-moment uniform grids gk_uniform = viscid.load_file(os.path.join(sample_dir, 'sample_gkeyll_uniform_q_*.h5')) _, axes = plt.subplots(1, 2, figsize=(9, 3)) for i, grid in enumerate(gk_uniform.iter_times(":")): vlt.plot(grid['rho_i'], logscale=True, style='contourf', levels=128, ax=axes[i]) seeds = viscid.Line((-1.2, 0, 0), (1.4, 0, 0), 8) b_lines, _ = viscid.calc_streamlines(grid['b'], seeds, method='euler1', max_length=20.0) vlt.plot2d_lines(b_lines, scalars='#000000', symdir='z', linewidth=1.0) plt.title(grid.format_time('.02f')) vlt.auto_adjust_subplots() plt.suptitle("Uniform Gkeyll Dataset") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() plt.clf() return 0
def run_div_test(fld, exact, title='', show=False, ignore_inexact=False): t0 = time() result_numexpr = viscid.div(fld, preferred="numexpr", only=False) t1 = time() logger.info("numexpr magnitude runtime: %g", t1 - t0) result_diff = viscid.diff(result_numexpr, exact)['x=1:-1, y=1:-1, z=1:-1'] if not ignore_inexact and not (result_diff.data < 5e-5).all(): logger.warning("numexpr result is far from the exact result") logger.info("min/max(abs(numexpr - exact)): %g / %g", np.min(result_diff.data), np.max(result_diff.data)) planes = ["y=0j", "z=0j"] nrows = 2 ncols = len(planes) _, axes = plt.subplots(nrows, ncols, squeeze=False) for i, p in enumerate(planes): vlt.plot(result_numexpr, p, ax=axes[0, i], show=False) vlt.plot(result_diff, p, ax=axes[1, i], show=False) plt.suptitle(title) vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def guess_dipole_moment(b, r=2.0, strength=DEFAULT_STRENGTH, cap_angle=40, cap_ntheta=121, cap_nphi=121, plot=False): """guess dipole moment from a B field""" viscid.logger.warning("guess_dipole_moment doesn't seem to do better than " "1.6 degrees, you may want to use cotr instead.") cap = seed.SphericalCap(r=r, angle=cap_angle, ntheta=cap_ntheta, nphi=cap_nphi) b_cap = interp_trilin(b, cap) # FIXME: this doesn't get closer than 1.6 deg @ (theta, mu) = (0, 7.5) # so maybe the index is incorrect somehow? idx = np.argmax(viscid.magnitude(b_cap).data) pole = cap.points()[:, idx] # FIXME: it should be achievabe to get strength from the magimum magnitude, # up to the direction pole = strength * pole / np.linalg.norm(pole) # # not sure where 0.133 comes from, this is probably not correct # pole *= 0.133 * np.dot(pole, b_cap.data.reshape(-1, 3)[idx, :]) * r**3 if plot: from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt vlt.plot(viscid.magnitude(b_cap)) vlt.plot(viscid.magnitude(b_cap), style='contour', levels=10, colors='k', colorbar=False, ax=plt.gca()) vlt.show() return pole
def run_test_2d(f, main__file__, show=False): vlt.clf() slc = "x=-20j:12j, y=0j" plot_kwargs = dict(title=True, earth=True) vlt.subplot(141) vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs) vlt.plot(np.abs(f['psi']), style='contour', logscale=True, levels=30, linewidths=0.8, colors='grey', linestyles='solid', colorbar=None, x=(-20, 12)) vlt.subplot(142) vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs) vlt.plot2d_quiver(f['v'][slc], step=5, color='y', pivot='mid', width=0.03, scale=600) vlt.subplot(143) vlt.plot(f['jy'], slc, clim=[-0.005, 0.005], **plot_kwargs) vlt.streamplot(f['v'][slc], linewidth=0.3) vlt.subplot(144) vlt.plot(f['jy'], "x=7j:12j, y=0j, z=0j") plt.suptitle("2D File") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3)) plt.gcf().set_size_inches(10, 4) vlt.savefig(next_plot_fname(main__file__)) if show: vlt.show()
def run_test(fld, seeds, plot2d=True, plot3d=True, add_title="", view_kwargs=None, show=False, scatter_mpl=False, mesh_mvi=True): interpolated_fld = viscid.interp_trilin(fld, seeds) seed_name = seeds.__class__.__name__ if add_title: seed_name += " " + add_title try: if not plot2d: raise ImportError from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() # plt.plot(seeds.get_points()[2, :], fld) mpl_plot_kwargs = dict() if interpolated_fld.is_spherical(): mpl_plot_kwargs['hemisphere'] = 'north' vlt.plot(interpolated_fld, **mpl_plot_kwargs) plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if show: plt.show() if scatter_mpl: plt.clf() vlt.plot2d_line(seeds.get_points(), fld, symdir='z', marker='o') plt.savefig(next_plot_fname(__file__, series='2d')) if show: plt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import vlab _ = get_mvi_fig(offscreen=not show) try: if mesh_mvi: mesh = vlab.mesh_from_seeds(seeds, scalars=interpolated_fld) mesh.actor.property.backface_culling = True except RuntimeError: pass pts = seeds.get_points() p = vlab.points3d(pts[0], pts[1], pts[2], interpolated_fld.flat_data, scale_mode='none', scale_factor=0.02) vlab.axes(p) vlab.title(seed_name) if view_kwargs: vlab.view(**view_kwargs) vlab.savefig(next_plot_fname(__file__, series='3d')) if show: vlab.show(stop=True) except ImportError: pass
def run_test_iof(f, main__file__, show=False): vlt.clf() fac_tot = 1e9 * f["fac_tot"] plot_args = dict(projection="polar", lin=[-300, 300], bounding_lat=35.0, drawcoastlines=True, # for basemap only title="Total FAC\n", gridec='gray', label_lat=True, label_mlt=True, colorbar=True, cbar_kwargs=dict(pad=0.15) # pad the colorbar away from the plot ) ax1 = vlt.subplot(121, projection='polar') vlt.plot(fac_tot, ax=ax1, hemisphere='north', **plot_args) ax1.annotate('(a)', xy=(0, 0), textcoords="axes fraction", xytext=(-0.1, 1.0), fontsize=18) ax2 = vlt.subplot(122, projection='polar') plot_args['gridec'] = False vlt.plot(fac_tot, ax=ax2, hemisphere="south", style="contourf", levels=50, extend="both", **plot_args) ax2.annotate('(b)', xy=(0, 0), textcoords="axes fraction", xytext=(-0.1, 1.0), fontsize=18) vlt.auto_adjust_subplots(subplot_params=dict()) plt.gcf().set_size_inches(8, 4) plt.savefig(next_plot_fname(main__file__)) if show: vlt.mplshow()
def run_test(fld, seeds, plot2d=True, plot3d=True, add_title="", view_kwargs=None, show=False, scatter_mpl=False, mesh_mvi=True): interpolated_fld = viscid.interp_trilin(fld, seeds) seed_name = seeds.__class__.__name__ if add_title: seed_name += " " + add_title try: if not plot2d: raise ImportError from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() # plt.plot(seeds.get_points()[2, :], fld) mpl_plot_kwargs = dict() if interpolated_fld.is_spherical(): mpl_plot_kwargs['hemisphere'] = 'north' vlt.plot(interpolated_fld, **mpl_plot_kwargs) plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if show: plt.show() if scatter_mpl: plt.clf() vlt.plot2d_line(seeds.get_points(), fld, symdir='z', marker='o') plt.savefig(next_plot_fname(__file__, series='2d')) if show: plt.show() except ImportError: pass try: if not plot3d: raise ImportError vlab, _ = get_mvi_fig() try: if mesh_mvi: mesh = vlab.mesh_from_seeds(seeds, scalars=interpolated_fld) mesh.actor.property.backface_culling = True except RuntimeError: pass pts = seeds.get_points() p = vlab.points3d(pts[0], pts[1], pts[2], interpolated_fld.flat_data, scale_mode='none', scale_factor=0.02) vlab.axes(p) vlab.title(seed_name) if view_kwargs: vlab.view(**view_kwargs) vlab.savefig(next_plot_fname(__file__, series='3d')) if show: vlab.show(stop=True) except ImportError: pass
def _main(): import viscid from viscid import sample_dir from viscid.plot import vpyplot as vlt logger.setLevel(viscid.logging.DEBUG) f = viscid.load_file(os.path.join(sample_dir, 'vpic_sample', 'global.vpc')) vlt.plot(-f['n_e']['y=0j'], logscale=True, show=True)
def run_test(show=False): f = viscid.load_file(os.path.join(viscid.sample_dir, "amr.xdmf")) plot_kwargs = dict(patchec='y') vlt.plot(f['f'], "z=0.0f", **plot_kwargs) plt.savefig(next_plot_fname(__file__)) if show: vlt.show()
def run_test(fld, seeds, kind, show=False): plt.clf() vlt.plot(viscid.interp(fld, seeds, kind=kind)) plt.title(kind) plt.savefig(next_plot_fname(__file__)) if show: vlt.show()
def run_test(show=False): f = viscid.load_file(os.path.join(viscid.sample_dir, "amr.xdmf")) plot_kwargs = dict(patchec='y') vlt.plot(f['f'], "z=0.0j", **plot_kwargs) plt.savefig(next_plot_fname(__file__)) if show: vlt.show()
def run_test(fld, seeds, plot2d=True, plot3d=True, add_title="", view_kwargs=None, show=False): interpolated_fld = viscid.interp_trilin(fld, seeds) seed_name = seeds.__class__.__name__ if add_title: seed_name += " " + add_title try: if not plot2d: raise ImportError from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt plt.clf() # plt.plot(seeds.get_points()[2, :], fld) mpl_plot_kwargs = dict() if interpolated_fld.is_spherical(): mpl_plot_kwargs['hemisphere'] = 'north' vlt.plot(interpolated_fld, **mpl_plot_kwargs) plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if show: plt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import vlab try: fig = _global_ns['figure'] vlab.clf() except KeyError: fig = vlab.figure(size=[1200, 800], offscreen=not show) _global_ns['figure'] = fig try: mesh = vlab.mesh_from_seeds(seeds, scalars=interpolated_fld) mesh.actor.property.backface_culling = True except RuntimeError: pass pts = seeds.get_points() p = vlab.points3d(pts[0], pts[1], pts[2], interpolated_fld.flat_data, scale_mode='none', scale_factor=0.02) vlab.axes(p) vlab.title(seed_name) if view_kwargs: vlab.view(**view_kwargs) vlab.savefig(next_plot_fname(__file__, series='3d')) if show: vlab.show() except ImportError: pass
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) f = viscid.load_file(os.path.join(viscid.sample_dir, "test.asc")) vlt.plot(f['c1'], show=False) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser) # args.show = True t = viscid.linspace_datetime64('2006-06-10 12:30:00.0', '2006-06-10 12:33:00.0', 16) tL = viscid.as_datetime64('2006-06-10 12:31:00.0') tR = viscid.as_datetime64('2006-06-10 12:32:00.0') y = np.linspace(2 * np.pi, 4 * np.pi, 12) ### plots with a datetime64 axis f0 = viscid.ones([t, y], crd_names='ty', center='node') T, Y = f0.get_crds(shaped=True) f0.data += np.arange(T.size).reshape(T.shape) f0.data += np.cos(Y) fig = plt.figure(figsize=(10, 5)) # 1D plot vlt.subplot(121) vlt.plot(f0[tL:tR]['y=0'], marker='^') plt.xlim(*viscid.as_datetime(t[[0, -1]]).tolist()) # 2D plot vlt.subplot(122) vlt.plot(f0, x=(t[0], t[-1])) plt.suptitle("datetime64") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.close(fig) ### plots with a timedelta64 axis tL = tL - t[0] tR = tR - t[0] t = t - t[0] f0 = viscid.ones([t, y], crd_names='ty', center='node') T, Y = f0.get_crds(shaped=True) f0.data += np.arange(T.size).reshape(T.shape) f0.data += np.cos(Y) fig = plt.figure(figsize=(10, 5)) # 1D plot vlt.subplot(121) vlt.plot(f0[tL:tR]['y=0'], marker='^') plt.xlim(*viscid.as_datetime(t[[0, -1]]).tolist()) # 2D plot vlt.subplot(122) vlt.plot(f0, x=(t[0], t[-1])) plt.suptitle("timedelta64") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.close(fig) return 0
def run_mpl_testA(show=False): logger.info("2D cell centered tests") x = np.array(np.linspace(-10, 10, 100), dtype=dtype) y = np.array(np.linspace(-10, 10, 120), dtype=dtype) z = np.array(np.linspace(-1, 1, 2), dtype=dtype) fld_s = viscid.empty([x, y, z], center='cell') Xcc, Ycc, Zcc = fld_s.get_crds_cc(shaped=True) # pylint: disable=unused-variable fld_s[:, :, :] = np.sin(Xcc) + np.cos(Ycc) _, axes = plt.subplots(4, 1, squeeze=False) vlt.plot(fld_s, "y=20j", ax=axes[0, 0], show=False, plot_opts="lin_0") vlt.plot(fld_s, "x=0j:20j,y=0j:5j", ax=axes[1, 0], earth=True, show=False, plot_opts="x_-10_0,y_0_7") vlt.plot(fld_s, "y=0j", ax=axes[2, 0], show=False, plot_opts="lin_-1_1") vlt.plot(fld_s, "z=0j,x=-20j:0j", ax=axes[3, 0], earth=True, show=False, plot_opts="lin_-5_5") plt.suptitle("2d cell centered") vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) f = viscid.load_file(os.path.join(sample_dir, 'vpic_sample', 'global.vpc')) # some slices that are good to check vlt.clf() vlt.plot(f['bx']['x=:32.01j']) plt.close() vlt.clf() vlt.plot(f['bx']['x=:33.0j']) plt.close() _, axes = vlt.subplots(2, 2, figsize=(8, 4)) for i, ti in enumerate([0, -1]): f.activate_time(ti) vlt.plot(f['n_e']['y=0j'], symmetric=False, ax=axes[0, i]) vlt.plot(f['bx']['y=0j'], symmetric=True, ax=axes[1, i]) axes[0, i].set_title(f.get_grid().time) vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.close() return 0
def run_mag_test(fld, title="", show=False): vx, vy, vz = fld.component_views() # pylint: disable=W0612 vx, vy, vz = fld.component_fields() try: t0 = time() mag_ne = viscid.magnitude(fld, preferred="numexpr", only=False) t1 = time() logger.info("numexpr mag runtime: %g", t1 - t0) except viscid.verror.BackendNotFound: xfail("Numexpr is not installed") planes = ["z=0", "y=0"] nrows = 4 ncols = len(planes) _, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True, squeeze=False) for ind, p in enumerate(planes): vlt.plot(vx, p, ax=axes[0, ind], show=False) vlt.plot(vy, p, ax=axes[1, ind], show=False) vlt.plot(vz, p, ax=axes[2, ind], show=False) vlt.plot(mag_ne, p, ax=axes[3, ind], show=False) plt.suptitle(title) vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, right=0.9)) plt.gcf().set_size_inches(6, 7) plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def run_mpl_testB(show=False): logger.info("3D node centered tests") x = np.array(np.linspace(-10, 10, 100), dtype=dtype) y = np.array(np.linspace(-10, 10, 120), dtype=dtype) z = np.array(np.linspace(-10, 10, 140), dtype=dtype) fld_s = viscid.empty([x, y, z], center='node') X, Y, Z = fld_s.get_crds_nc(shaped=True) # pylint: disable=W0612 fld_s[:, :, :] = np.sin(X) + np.cos(Y) - np.cos(Z) # print("shape: ", fld_s.data.shape) nrows = 4 ncols = 1 plt.subplot2grid((nrows, ncols), (0, 0)) vlt.plot(fld_s, "z=0,x=:30", earth=True, plot_opts="lin_0") plt.subplot2grid((nrows, ncols), (1, 0)) vlt.plot(fld_s, "z=0.75f,x=-4:-1,y=-3f:3f", earth=True) plt.subplot2grid((nrows, ncols), (2, 0)) vlt.plot(fld_s, "x=-0.5f:,y=-3f:3f,z=0f", earth=True) plt.subplot2grid((nrows, ncols), (3, 0)) vlt.plot(fld_s, "x=0.0f,y=-5.0f:5.0f", earth=True, plot_opts="log,g") plt.suptitle("3d node centered") vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def run_test_3d(f, main__file__, show=False): vlt.clf() slc = "x=-20f:12f, y=0f" plot_kwargs = dict(title=True, earth=True) vlt.subplot(141) vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs) vlt.subplot(142) vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs) vlt.plot2d_quiver(f['v'][slc], step=5, color='y', pivot='mid', width=0.03, scale=600) vlt.subplot(143) vlt.plot(f['jy'], slc, clim=(-0.005, 0.005), **plot_kwargs) vlt.streamplot(f['v'][slc], linewidth=0.3) vlt.subplot(144) vlt.plot(f['jy'], "x=7f:12f, y=0f, z=0f") plt.suptitle("3D File") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3)) plt.gcf().set_size_inches(10, 4) vlt.savefig(next_plot_fname(main__file__)) if show: vlt.show()
def run_mpl_testB(show=False): logger.info("3D node centered tests") x = np.array(np.linspace(-10, 10, 100), dtype=dtype) y = np.array(np.linspace(-10, 10, 120), dtype=dtype) z = np.array(np.linspace(-10, 10, 140), dtype=dtype) fld_s = viscid.empty([x, y, z], center='node') X, Y, Z = fld_s.get_crds_nc(shaped=True) # pylint: disable=W0612 fld_s[:, :, :] = np.sin(X) + np.cos(Y) - np.cos(Z) # print("shape: ", fld_s.data.shape) _, axes = plt.subplots(4, 1, squeeze=False) vlt.plot(fld_s, "z=0,x=:30", ax=axes[0, 0], earth=True, plot_opts="lin_0") vlt.plot(fld_s, "z=0.75j,x=-4:-1,y=-3j:3j", ax=axes[1, 0], earth=True) vlt.plot(fld_s, "x=-0.5j:,y=-3j:3j,z=0j", ax=axes[2, 0], earth=True) vlt.plot(fld_s, "x=0.0j,y=-5.0j:5.0j", ax=axes[3, 0], earth=True, plot_opts="log,g") plt.suptitle("3d node centered") vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def compare_vectors(cc_fld, ecfc_fld, to_cc_fn, catol=1e-8, rtol=2.2e-6, trim_slc=':', bnd=True, make_plots=False): trimmed = cc_fld[trim_slc] cc = to_cc_fn(ecfc_fld, bnd=bnd) reldiff = (cc - trimmed) / viscid.magnitude(trimmed) reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"] reldiff.name = cc.name + " - " + trimmed.name reldiff.pretty_name = cc.pretty_name + " - " + trimmed.pretty_name comp_beyond_limit = [False] * 3 for i, d in enumerate('xyz'): abs_max_rel_diff = np.nanmax(np.abs(reldiff[d])) # trim first and last when diffing crds since they're extrapolated # in the ecfc field, so we already know they won't match up do dx max_crd_diff = np.max((trimmed.get_crd(d) - cc.get_crd(d))[1:-1]) print("{0}{1}, max absolute relative diff: {2:.3e} ({1} crds: {3:.1e})" "".format(cc_fld.name, d, abs_max_rel_diff, max_crd_diff)) if abs_max_rel_diff > rtol or abs(max_crd_diff) > catol: comp_beyond_limit[i] = True # plot differences? if make_plots: ax1 = plt.subplot(311) vlt.plot(cc_fld[d]['y=0j'], symmetric=True, earth=True) plt.subplot(312, sharex=ax1, sharey=ax1) vlt.plot(cc[d]['y=0j'], symmetric=True, earth=True) plt.subplot(313, sharex=ax1, sharey=ax1) vlt.plot(reldiff[d]['y=0j'], symmetric=True, earth=True) vlt.show() if any(comp_beyond_limit): raise RuntimeError("Tolerance exceeded on ->CC accuracy")
def compare_vectors(orig_fld, cmp_fld, catol=1e-8, rtol=2e-6, trim_slc='x=2:-2, y=2:-2, z=2:-2', make_plots=False): # mag_shape = list(orig_fld.sshape) + [1] mag = viscid.magnitude(orig_fld) # .data.reshape(mag_shape) reldiff = (cmp_fld - orig_fld) / mag reldiff = reldiff[trim_slc] reldiff.name = cmp_fld.name + " - " + orig_fld.name reldiff.pretty_name = cmp_fld.pretty_name + " - " + orig_fld.pretty_name comp_beyond_limit = [False] * 3 for i, d in enumerate('xyz'): abs_max_rel_diff = np.nanmax(np.abs(reldiff[d])) max_crd_diff = np.max(orig_fld.get_crd(d) - cmp_fld.get_crd(d)) print("{0}{1}, max absolute relative diff: {2:.3e} ({1} crds: {3:.1e})" "".format(cmp_fld.name, d, abs_max_rel_diff, max_crd_diff)) if abs_max_rel_diff > rtol or abs(max_crd_diff) > catol: comp_beyond_limit[i] = True # plot differences? if make_plots: plt.clf() ax1 = plt.subplot(311) vlt.plot(orig_fld[d]['y=0j'], symmetric=True, earth=True) plt.subplot(312, sharex=ax1, sharey=ax1) vlt.plot(cmp_fld[d]['y=0j'], symmetric=True, earth=True) plt.subplot(313, sharex=ax1, sharey=ax1) vlt.plot(reldiff[d]['y=0j'], symmetric=True, earth=True) vlt.show()
def main(): f = viscid.load_file("~/dev/work/tmedium/*.3d.[-1].xdmf") grid = f.get_grid() gslc = "x=-26f:12.5f, y=-15f:15f, z=-15f:15f" # gslc = "x=-12.5f:26f, y=-15f:15f, z=-15f:15f" b_cc = f['b_cc'][gslc] b_cc.name = "b_cc" b_fc = f['b_fc'][gslc] b_fc.name = "b_fc" e_cc = f['e_cc'][gslc] e_cc.name = "e_cc" e_ec = f['e_ec'][gslc] e_ec.name = "e_ec" pp = f['pp'][gslc] pp.name = 'pp' pargs = dict(logscale=True, earth=True) # vlt.clf() # ax1 = vlt.subplot(211) # vlt.plot(f['pp']['y=0f'], **pargs) # # vlt.plot(viscid.magnitude(f['b_cc']['y=0f']), **pargs) # # vlt.show() # vlt.subplot(212, sharex=ax1, sharey=ax1) # vlt.plot(viscid.magnitude(viscid.fc2cc(f['b_fc'])['y=0f']), **pargs) # vlt.show() basename = './tmediumR.3d.{0:06d}'.format(int(grid.time)) viscid.save_fields(basename + '.h5', [b_cc, b_fc, e_cc, e_ec, pp]) f2 = viscid.load_file(basename + ".xdmf") pargs = dict(logscale=True, earth=True) vlt.clf() ax1 = vlt.subplot(211) vlt.plot(f2['pp']['y=0f'], style='contour', levels=5, colorbar=None, colors='k', **pargs) vlt.plot(viscid.magnitude(f2['b_cc']['y=0f']), **pargs) vlt.subplot(212, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(viscid.fc2cc(f2['b_fc'])['y=0f']), **pargs) vlt.show() os.remove(basename + '.h5') os.remove(basename + '.xdmf') return 0
def main(): f = viscid.load_file("~/dev/work/tmedium/*.3d.[-1].xdmf") grid = f.get_grid() gslc = "x=-26j:12.5j, y=-15j:15j, z=-15j:15j" # gslc = "x=-12.5j:26j, y=-15j:15j, z=-15j:15j" b_cc = f['b_cc'][gslc] b_cc.name = "b_cc" b_fc = f['b_fc'][gslc] b_fc.name = "b_fc" e_cc = f['e_cc'][gslc] e_cc.name = "e_cc" e_ec = f['e_ec'][gslc] e_ec.name = "e_ec" pp = f['pp'][gslc] pp.name = 'pp' pargs = dict(logscale=True, earth=True) # vlt.clf() # ax1 = vlt.subplot(211) # vlt.plot(f['pp']['y=0j'], **pargs) # # vlt.plot(viscid.magnitude(f['b_cc']['y=0j']), **pargs) # # vlt.show() # vlt.subplot(212, sharex=ax1, sharey=ax1) # vlt.plot(viscid.magnitude(viscid.fc2cc(f['b_fc'])['y=0j']), **pargs) # vlt.show() basename = './tmediumR.3d.{0:06d}'.format(int(grid.time)) viscid.save_fields(basename + '.h5', [b_cc, b_fc, e_cc, e_ec, pp]) f2 = viscid.load_file(basename + ".xdmf") pargs = dict(logscale=True, earth=True) vlt.clf() ax1 = vlt.subplot(211) vlt.plot(f2['pp']['y=0j'], style='contour', levels=5, colorbar=None, colors='k', **pargs) vlt.plot(viscid.magnitude(f2['b_cc']['y=0j']), **pargs) vlt.subplot(212, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(viscid.fc2cc(f2['b_fc'])['y=0j']), **pargs) vlt.show() os.remove(basename + '.h5') os.remove(basename + '.xdmf') return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) ####### test binary files f_bin = viscid.load_file(os.path.join(sample_dir, 'ath_sample.*.bin')) for i, grid in enumerate(f_bin.iter_times(":")): plt.subplot2grid((2, 2), (0, i)) vlt.plot(grid['bx']) plt.subplot2grid((2, 2), (1, i)) vlt.plot(grid['by']) plt.suptitle("athena bin (binary) files") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.clf() ####### test ascii files f_tab = viscid.load_file(os.path.join(sample_dir, 'ath_sample.*.tab')) for i, grid in enumerate(f_tab.iter_times(":")): plt.subplot2grid((2, 2), (0, i)) vlt.plot(grid['bx']) plt.subplot2grid((2, 2), (1, i)) vlt.plot(grid['by']) plt.suptitle("athena tab (ascii) files") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.clf() return 0
def run_test_3d(f, main__file__, show=False): vlt.clf() slc = "x=-20j:12j, y=0j" plot_kwargs = dict(title=True, earth=True) vlt.subplot(141) vlt.plot(f['pp'], slc, logscale=True, **plot_kwargs) vlt.subplot(142) vlt.plot(viscid.magnitude(f['bcc']), slc, logscale=True, **plot_kwargs) vlt.plot2d_quiver(f['v'][slc], step=5, color='y', pivot='mid', width=0.03, scale=600) vlt.subplot(143) vlt.plot(f['jy'], slc, clim=(-0.005, 0.005), **plot_kwargs) vlt.streamplot(f['v'][slc], linewidth=0.3) vlt.subplot(144) vlt.plot(f['jy'], "x=7j:12j, y=0j, z=0j") plt.suptitle("3D File") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9, wspace=1.3)) plt.gcf().set_size_inches(10, 4) vlt.savefig(next_plot_fname(main__file__)) if show: vlt.show()
def run_mpl_testA(show=False): logger.info("2D cell centered tests") x = np.array(np.linspace(-10, 10, 100), dtype=dtype) y = np.array(np.linspace(-10, 10, 120), dtype=dtype) z = np.array(np.linspace(-1, 1, 2), dtype=dtype) fld_s = viscid.empty([x, y, z], center='cell') Xcc, Ycc, Zcc = fld_s.get_crds_cc(shaped=True) # pylint: disable=unused-variable fld_s[:, :, :] = np.sin(Xcc) + np.cos(Ycc) nrows = 4 ncols = 1 plt.subplot2grid((nrows, ncols), (0, 0)) vlt.plot(fld_s, "y=20f", show=False, plot_opts="lin_0") plt.subplot2grid((nrows, ncols), (1, 0)) vlt.plot(fld_s, "x=0f:20f,y=0f:5f", earth=True, show=False, plot_opts="x_-10_0,y_0_7") plt.subplot2grid((nrows, ncols), (2, 0)) vlt.plot(fld_s, "y=0f", show=False, plot_opts="lin_-1_1") plt.subplot2grid((nrows, ncols), (3, 0)) vlt.plot(fld_s, "z=0f,x=-20f:0f", earth=True, show=False, plot_opts="lin_-5_5") plt.suptitle("2d cell centered") vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if show: vlt.mplshow()
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name='psi', center='node') b = viscid.empty([x, y, z], nr_comps=3, name='b', center='cell', layout='interlaced') X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X**2 + Y**2 - Z**2) b['x'] = Xcc b['y'] = Ycc b['z'] = -Zcc # save an hdf5 file with companion xdmf file h5_fname = os.path.join(viscid.sample_dir, "test.h5") viscid.save_fields(h5_fname, [psi, b]) # load the companion xdmf file xdmf_fname = h5_fname[:-3] + ".xdmf" f = viscid.load_file(xdmf_fname) plt.subplot(131) vlt.plot(f['psi'], "y=0") plt.subplot(132) vlt.plot(f['b'].component_fields()[0], "y=0") plt.subplot(133) vlt.plot(f['b'].component_fields()[2], "y=0") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(h5_fname) os.remove(xdmf_fname) return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) ####### test binary files f_bin = viscid.load_file(os.path.join(sample_dir, 'ath_sample.*.bin')) _, axes = plt.subplots(2, 2) for i, grid in enumerate(f_bin.iter_times(":")): vlt.plot(grid['bx'], ax=axes[0, i]) vlt.plot(grid['by'], ax=axes[1, i]) plt.suptitle("athena bin (binary) files") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.close() ####### test ascii files f_tab = viscid.load_file(os.path.join(sample_dir, 'ath_sample.*.tab')) _, axes = plt.subplots(2, 2) for i, grid in enumerate(f_tab.iter_times(":")): vlt.plot(grid['bx'], ax=axes[0, i]) vlt.plot(grid['by'], ax=axes[1, i]) plt.suptitle("athena tab (ascii) files") vlt.auto_adjust_subplots(subplot_params=dict(top=0.9)) plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() plt.close() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--keep", action="store_true") args = vutil.common_argparse(parser) # setup a simple force free field x = np.linspace(-2, 2, 20) y = np.linspace(-2.5, 2.5, 25) z = np.linspace(-3, 3, 30) psi = viscid.empty([x, y, z], name='psi', center='node') b = viscid.empty([x, y, z], nr_comps=3, name='b', center='cell', layout='interlaced') X, Y, Z = psi.get_crds_nc("xyz", shaped=True) Xcc, Ycc, Zcc = psi.get_crds_cc("xyz", shaped=True) psi[:, :, :] = 0.5 * (X**2 + Y**2 - Z**2) b['x'] = Xcc b['y'] = Ycc b['z'] = -Zcc # save an hdf5 file with companion xdmf file h5_fname = os.path.join(".", "test.h5") viscid.save_fields(h5_fname, [psi, b]) # load the companion xdmf file xdmf_fname = h5_fname[:-3] + ".xdmf" f = viscid.load_file(xdmf_fname) plt.subplot(131) vlt.plot(f['psi'], "y=0") plt.subplot(132) vlt.plot(f['b'].component_fields()[0], "y=0") plt.subplot(133) vlt.plot(f['b'].component_fields()[2], "y=0") plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() if not args.keep: os.remove(h5_fname) os.remove(xdmf_fname) return 0
def compare_vectors(cc_fld, ecfc_fld, to_cc_fn, catol=1e-8, rtol=2.2e-6, trim_slc=':', bnd=True, make_plots=False): trimmed = cc_fld[trim_slc] cc = to_cc_fn(ecfc_fld, bnd=bnd) reldiff = (cc - trimmed) / viscid.magnitude(trimmed) reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"] reldiff.name = cc.name + " - " + trimmed.name reldiff.pretty_name = cc.pretty_name + " - " + trimmed.pretty_name comp_beyond_limit = [False] * 3 for i, d in enumerate('xyz'): abs_max_rel_diff = np.nanmax(np.abs(reldiff[d])) # trim first and last when diffing crds since they're extrapolated # in the ecfc field, so we already know they won't match up do dx max_crd_diff = np.max((trimmed.get_crd(d) - cc.get_crd(d))[1:-1]) print("{0}{1}, max absolute relative diff: {2:.3e} ({1} crds: {3:.1e})" "".format(cc_fld.name, d, abs_max_rel_diff, max_crd_diff)) if abs_max_rel_diff > rtol or abs(max_crd_diff) > catol: comp_beyond_limit[i] = True # plot differences? if make_plots: ax1 = plt.subplot(311) vlt.plot(cc_fld[d]['y=0f'], symmetric=True, earth=True) plt.subplot(312, sharex=ax1, sharey=ax1) vlt.plot(cc[d]['y=0f'], symmetric=True, earth=True) plt.subplot(313, sharex=ax1, sharey=ax1) vlt.plot(reldiff[d]['y=0f'], symmetric=True, earth=True) vlt.show() if any(comp_beyond_limit): raise RuntimeError("Tolerance exceeded on ->CC accuracy")
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--notwo", dest='notwo', action="store_true") parser.add_argument("--nothree", dest='nothree', action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) plot2d = not args.notwo plot3d = not args.nothree # plot2d = True # plot3d = True # args.show = True img = np.load(os.path.join(sample_dir, "logo.npy")) x = np.linspace(-1, 1, img.shape[0]) y = np.linspace(-1, 1, img.shape[1]) z = np.linspace(-1, 1, img.shape[2]) logo = viscid.arrays2field([x, y, z], img) if 1: viscid.logger.info('Testing Point with custom local coordinates...') pts = np.vstack([[-1, -0.5, 0, 0.5, 1], [-1, -0.5, 0, 0.5, 1], [ 0, 0.5, 1, 1.5, 2]]) local_crds = viscid.asarray_datetime64([0, 60, 120, 180, 240], conservative=True) seeds = viscid.Point(pts, local_crds=local_crds) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Line...') seeds = viscid.Line([-1, -1, 0], [1, 1, 2], n=5) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Plane...') seeds = viscid.Plane([0.0, 0.0, 0.0], [1, 1, 1], [1, 0, 0], 2, 2, nl=160, nm=170, NL_are_vectors=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Volume...') seeds = viscid.Volume([-0.8, -0.8, -0.8], [0.8, 0.8, 0.8], n=[64, 64, 3]) # note: can't make a 2d plot of the volume w/o a slice run_test(logo, seeds, plot2d=False, plot3d=plot3d, add_title="3d", show=args.show) if 1: viscid.logger.info('Testing Volume (with ignorable dim)...') seeds = viscid.Volume([-0.8, -0.8, 0.0], [0.8, 0.8, 0.0], n=[64, 64, 1]) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="2d", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (phi, theta)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (theta, phi)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (phi, theta)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (theta, phi)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Patch...') seeds = viscid.SphericalPatch(p0=[0, 0, 0], p1=[0, -0, -1], max_alpha=30.0, max_beta=59.9, nalpha=65, nbeta=80, r=0.5, roll=45.0) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: # this spline test is very custom viscid.logger.info('Testing Spline...') try: import scipy.interpolate as interpolate except ImportError: msg = "XFail: ImportError (is scipy installed?)" if plot2d: try: from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() plt.annotate(msg, xy=(0.3, 0.4), xycoords='axes fraction') plt.savefig(next_plot_fname(__file__, series='2d')) plt.savefig(next_plot_fname(__file__, series='2d')) plt.savefig(next_plot_fname(__file__, series='3d')) if args.show: plt.show() except ImportError: pass else: knots = np.array([[ 0.2, 0.5, 0.0], [-0.2, 0.5, 0.2], [-0.2, 0.0, 0.4], [ 0.2, 0.0, 0.2], [ 0.2, -0.5, 0.0], [-0.2, -0.5, 0.2]]).T seed_name = "Spline" fld = logo seeds = viscid.Spline(knots) seed_pts = seeds.get_points() interp_fld = viscid.interp_trilin(fld, seeds) if plot2d: try: from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() vlt.plot(interp_fld) plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: plt.show() plt.clf() from matplotlib import rcParams _ms = rcParams['lines.markersize'] plt.gca().scatter(knots[0, :], knots[1, :], s=(2 * _ms)**2, marker='^', color='y') plt.gca().scatter(seed_pts[0, :], seed_pts[1, :], s=(1.5 * _ms)**2, marker='o', color='k') vlt.plot2d_line(seed_pts, scalars=interp_fld.flat_data, symdir='z') plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: plt.show() except ImportError: pass if plot3d: try: from viscid.plot import vlab _ = get_mvi_fig(offscreen=not args.show) vlab.points3d(knots[0], knots[1], knots[2], color=(1.0, 1.0, 0), scale_mode='none', scale_factor=0.04) p = vlab.points3d(seed_pts[0], seed_pts[1], seed_pts[2], color=(0, 0, 0), scale_mode='none', scale_factor=0.03) vlab.plot_line(seed_pts, scalars=interp_fld.flat_data, tube_radius=0.01) vlab.axes(p) vlab.title(seed_name) vlab.mlab.roll(-90.0) vlab.savefig(next_plot_fname(__file__, series='3d')) if args.show: vlab.show(stop=True) except ImportError: pass if 1: viscid.logger.info('Testing RectilinearMeshPoints...') f = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[-1].xdmf')) slc = 'x=-40j:12j, y=-10j:10j, z=-10j:10j' b = f['b'][slc] z = b.get_crd('z') sheet_iz = np.argmin(b['x']**2, axis=2) sheet_pts = b['z=0:1'].get_points() sheet_pts[2, :] = z[sheet_iz].reshape(-1) isphere_mask = np.sum(sheet_pts[:2, :]**2, axis=0) < 5**2 day_mask = sheet_pts[0:1, :] > -1.0 sheet_pts[2, :] = np.choose(isphere_mask, [sheet_pts[2, :], 0]) sheet_pts[2, :] = np.choose(day_mask, [sheet_pts[2, :], 0]) nx, ny, _ = b.sshape sheet_seed = viscid.RectilinearMeshPoints(sheet_pts.reshape(3, nx, ny)) vx_sheet = viscid.interp_nearest(f['vx'], sheet_seed) try: if not plot2d: raise ImportError from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt vlt.clf() vlt.plot(vx_sheet, symmetric=True) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: vlt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import vlab _ = get_mvi_fig(offscreen=not args.show) mesh = vlab.mesh_from_seeds(sheet_seed, scalars=vx_sheet, clim=(-400, 400)) vlab.plot_earth_3d(crd_system=b) vlab.view(azimuth=+90.0 + 45.0, elevation=90.0 - 25.0, distance=30.0, focalpoint=(-10.0, +1.0, +1.0)) vlab.title("RectilinearMeshPoints") vlab.savefig(next_plot_fname(__file__, series='3d')) if args.show: vlab.show(stop=True) except ImportError: pass # prevent weird xorg bad-instructions on tear down if 'figure' in _global_ns and _global_ns['figure'] is not None: from viscid.plot import vlab vlab.mlab.close(_global_ns['figure']) return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--prof", action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) b = viscid.make_dipole(l=(-5, -5, -5), h=(5, 5, 5), n=(255, 255, 127), m=(0, 0, -1)) b2 = np.sum(b * b, axis=b.nr_comp) if args.prof: print("Without boundaries") viscid.timeit(viscid.grad, b2, bnd=False, timeit_repeat=10, timeit_print_stats=True) print("With boundaries") viscid.timeit(viscid.grad, b2, bnd=True, timeit_repeat=10, timeit_print_stats=True) grad_b2 = viscid.grad(b2) grad_b2.pretty_name = r"$\nabla$ B$^2$" conv = viscid.convective_deriv(b) conv.pretty_name = r"(B $\cdot \nabla$) B" _ = plt.figure(figsize=(9, 4.2)) ax1 = vlt.subplot(231) vlt.plot(b2['z=0j'], logscale=True) vlt.plot(b2['z=0j'], logscale=True, style='contour', levels=10, colors='grey') # vlt.plot2d_quiver(viscid.normalize(b['z=0j']), step=16, pivot='mid') ax2 = vlt.subplot(234) vlt.plot(b2['y=0j'], logscale=True) vlt.plot(b2['y=0j'], logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(b['y=0j'], preferred='numpy'), step=16, pivot='mid') vlt.subplot(232, sharex=ax1, sharey=ax1) vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0j']), logscale=True) vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0j']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(grad_b2['z=0j']), step=16, pivot='mid') vlt.subplot(235, sharex=ax2, sharey=ax2) vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0j']), logscale=True) vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0j']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(grad_b2['y=0j']), step=16, pivot='mid') vlt.subplot(233, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(conv['z=0j']), logscale=True) vlt.plot(viscid.magnitude(conv['z=0j']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(conv['z=0j']), step=16, pivot='mid') vlt.subplot(236, sharex=ax2, sharey=ax2) vlt.plot(viscid.magnitude(conv['y=0j']), logscale=True) vlt.plot(viscid.magnitude(conv['y=0j']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(conv['y=0j']), step=16, pivot='mid') vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() return 0
def apply_labels(labels=None, colors=None, ax=None, magnet=(0.5, 0.75), magnetcoords="axes fraction", padding=None, paddingcoords="offset points", choices="00:02:20:22", n_candidates=32, ignore_filling=False, spacing='linear', _debug=False, **kwargs): """Apply labels directly to series in liu of a legend The `choices` offsets are as follows:: --------------------- | 02 | 12 | 22 | |-------------------| | 01 | XX | 21 | |-------------------| | 00 | 10 | 20 | --------------------- Args: labels (sequence): Optional sequence of labels to override the labels already in the data series colors (str, sequence): color as hex string, list of hex strings to color each label, or an Nx4 ndarray of rgba values for N labels ax (matplotlib.axis): axis; defaults to `plt.gca()` magnet (tuple): prefer positions that are closer to the magnet magnetcoords (str): 'offset pixels', 'offset points' or 'axes fraction' padding (tuple): padding for text in the (x, y) directions paddingcoords (str): 'offset pixels', 'offset points' or 'axes fraction' choices (str): colon separated list of possible label positions relative to the data values. The positions are summarized above. alpha (float): alpha channel (opacity) of label text. Defaults to 1.0 to make text visible. Set to `None` to use the underlying alpha from the handle's color. n_candidates (int): number of potential label locations to consider for each data series. ignore_filling (bool): if True, then assume it's ok to place labels inside paths that are filled with color spacing (str): one of 'linear' or 'random' to specify how far apart candidate locations are spaced along path segments _debug (bool): Mark up all possible label locations **kwargs: passed to plt.annotate Returns: List: annotation objects """ if not ax: ax = plt.gca() if isinstance(colors, (list, tuple)): pass spacing = spacing.strip().lower() if spacing not in ('linear', 'random'): raise ValueError("Spacing '{0}' not understood".format(spacing)) rand_state = np.random.get_state() if spacing == 'random' else None if rand_state is not None: # save the RNG state to restore it later so that plotting functions # don't change the results of scripts that use random numbers np.random.seed(1) _xl, _xh = ax.get_xlim() _yl, _yh = ax.get_ylim() axbb0 = np.array([_xl, _yl]).reshape(1, 2) axbb1 = np.array([_xh, _yh]).reshape(1, 2) # choices:: "01:02:22" -> [(0, 1), (0, 2), (2, 2)] choices = [(int(c[0]), int(c[1])) for c in choices.split(':')] _size = kwargs.get('fontsize', kwargs.get('size', None)) _fontproperties = kwargs.get('fontproperties', None) font_size_pts = text_size_points(size=_size, fontproperties=_fontproperties) # set the default padding equal to the font size if paddingcoords == 'offset pixels': default_padding = font_size_pts * 72 / ax.figure.dpi elif paddingcoords == 'offset points': default_padding = font_size_pts elif paddingcoords == 'axes fraction': default_padding = 0.05 else: raise ValueError("Bad padding coords '{0}'".format(paddingcoords)) # print("fontsize pt:", font_size_pts, # "fontsize px:", xy_as_pixels([font_size_pts, font_size_pts], # 'offset points')[0]) if not isinstance(padding, (list, tuple)): padding = [padding, padding] padding = [default_padding if pd is None else pd for pd in padding] # print("padding::", paddingcoords, padding) magnet_px = xy_as_pixels(magnet, magnetcoords, ax=ax) padding_px = xy_as_pixels(padding, paddingcoords, ax=ax) # print("padding px::", padding_px) annotations = [] cand_map = {} for choice in choices: cand_map[choice] = np.zeros([n_candidates, 2, 2], dtype='f') # these paths are all the paths we can get our hands on so that the text # doesn't overlap them. bboxes around labels are added as we go paths_px = [] # here is a list of bounding boxes around the text boxes as we add them bbox_paths_px = [] is_filled = [] ## how many vertices to avoid ? # artist # collection # image # line # patch # table # container for line in ax.lines: paths_px += [ax.transData.transform_path(line.get_path())] is_filled += [False] for collection in ax.collections: for pth in collection.get_paths(): paths_px += [ax.transData.transform_path(pth)] is_filled += [collection.get_fill()] if ignore_filling: is_filled = [False] * len(is_filled) hands, hand_labels = ax.get_legend_handles_labels() colors = _cycle_colors(colors, len(hands)) # >>> debug >>> if _debug: import viscid from matplotlib import patches as mpatches from viscid.plot import vpyplot as vlt _fig_width = int(ax.figure.bbox.width) _fig_height = int(ax.figure.bbox.height) fig_fld = viscid.zeros((_fig_width, _fig_height), dtype='f', center='node') _X, _Y = fig_fld.get_crds(shaped=True) _axXL, _axYL, _axXH, _axYH = ax.bbox.extents _mask = np.bitwise_and(np.bitwise_and(_X >= _axXL, _X <= _axXH), np.bitwise_and(_Y >= _axYL, _Y <= _axYH)) fig_fld.data[_mask] = 1.0 dfig, dax = plt.subplots(1, 1, figsize=ax.figure.get_size_inches()) vlt.plot(fig_fld, ax=dax, cmap='ocean', colorbar=None) for _, path in enumerate(paths_px): dax.plot(path.vertices[:, 0], path.vertices[:, 1]) dfig.subplots_adjust(bottom=0.0, left=0.0, top=1.0, right=1.0) else: dfig, dax = None, None # <<< debug <<< for i, hand, label_i in zip(count(), hands, hand_labels): if labels and i < len(labels): label = labels[i] else: label = label_i # divine color of label if colors[i]: color = colors[i] else: try: color = hand.get_color() except AttributeError: color = hand.get_facecolor()[0] # get path vertices to determine candidate label positions try: verts = hand.get_path().vertices except AttributeError: verts = [p.vertices for p in hand.get_paths()] verts = np.concatenate(verts, axis=0) segl_dat = verts[:-1, :] segh_dat = verts[1:, :] # take out path segments that have one vertex outside the view _seg_mask = np.all( np.bitwise_and(segl_dat >= axbb0, segl_dat <= axbb1) & np.bitwise_and(segh_dat >= axbb0, segh_dat <= axbb1), axis=1) segl_dat = segl_dat[_seg_mask, :] segh_dat = segh_dat[_seg_mask, :] if np.prod(segl_dat.shape) == 0: print("no full segments are visible, skipping path", i, hand) continue segl_px = ax.transData.transform(segl_dat) segh_px = ax.transData.transform(segh_dat) seglen_px = np.linalg.norm(segh_px - segl_px, axis=1) # take out path segments that are 0 pixels in length _non0_seg_mask = seglen_px > 0 segl_dat = segl_dat[_non0_seg_mask, :] segh_dat = segh_dat[_non0_seg_mask, :] segl_px = segl_px[_non0_seg_mask, :] segh_px = segh_px[_non0_seg_mask, :] seglen_px = seglen_px[_non0_seg_mask] if np.prod(segl_dat.shape) == 0: print("no non-0 segments are visible, skipping path", i, hand) continue # i deeply appologize for how convoluted this got, but the punchline # is that each line segment gets candidates proportinal to their # length in pixels on the figure s_src = np.concatenate([[0], np.cumsum(seglen_px)]) if rand_state is not None: s_dest = s_src[-1] * np.sort(np.random.rand(n_candidates)) else: s_dest = np.linspace(0, s_src[-1], n_candidates) _diff = s_dest.reshape(1, -1) - s_src.reshape(-1, 1) iseg = np.argmin(np.ma.masked_where(_diff <= 0, _diff), axis=0) frac = (s_dest - s_src[iseg]) / seglen_px[iseg] root_dat = (segl_dat[iseg] + frac.reshape(-1, 1) * (segh_dat[iseg] - segl_dat[iseg])) root_px = ax.transData.transform(root_dat) # estimate the width and height of the label's text txt_size = np.array( estimate_text_size_px(label, fig=ax.figure, size=font_size_pts)) txt_size = txt_size.reshape([1, 2]) # this initial offset is needed to shift the center of the label # to the data point offset0 = -txt_size / 2 # now we can shift the label away from the data point by an amount # equal to half the text width/height + the padding offset1 = padding_px + txt_size / 2 for key, abs_px_arr in cand_map.items(): ioff = np.array(key, dtype='i').reshape(1, 2) - 1 total_offset = offset0 + ioff * offset1 # approx lower left corner of the text box in absolute pixels abs_px_arr[:, :, 0] = root_px + total_offset # approx upper right corner of the text box in absolute pixels abs_px_arr[:, :, 1] = abs_px_arr[:, :, 0] + txt_size # candidates_abs_px[i] has root @ root_px[i % n_candidates] candidates_abs_px = np.concatenate([cand_map[c] for c in choices], axis=0) # find how many other things each candidate overlaps n_overlaps = np.zeros_like(candidates_abs_px[:, 0, 0]) for k, candidate in enumerate(candidates_abs_px): cand_bbox = Bbox(candidate.T) # penalty for each time a box overlaps a path that's already # on the plot for ipth, path in enumerate(paths_px): if path.intersects_bbox(cand_bbox, filled=is_filled[ipth]): n_overlaps[k] += 1 # slightly larger penalty if we intersect a text box that we # just added to the plot for ipth, path in enumerate(bbox_paths_px): if path.intersects_bbox(cand_bbox, filled=is_filled[ipth]): n_overlaps[k] += 5 # big penalty if the candidate is out of the current view if not (ax.bbox.contains(*cand_bbox.min) and ax.bbox.contains(*cand_bbox.max)): n_overlaps[k] += 100 # sort candidates by distance between center of text box and magnet magnet_dist = np.linalg.norm(np.mean(candidates_abs_px, axis=-1) - magnet_px, axis=1) isorted = np.argsort(magnet_dist) magnet_dist = np.array(magnet_dist[isorted]) candidates_abs_px = np.array(candidates_abs_px[isorted, :, :]) n_overlaps = np.array(n_overlaps[isorted]) root_dat = np.array(root_dat[isorted % n_candidates, :]) root_px = np.array(root_px[isorted % n_candidates, :]) # sort candidates so the ones with the fewest overlaps are first # but do it with a stable algorithm so among the best candidates, # choose the one closest to the magnet sargs = np.argsort(n_overlaps, kind='mergesort') # >>> debug >>> if dax is not None: for _candidate, n_overlap in zip(candidates_abs_px, n_overlaps): _cand_bbox = Bbox(_candidate.T) _x0 = _cand_bbox.get_points()[0] _bbox_center = np.mean(_candidate, axis=-1) _ray_x = [_bbox_center[0], magnet_px[0]] _ray_y = [_bbox_center[1], magnet_px[1]] dax.plot(_ray_x, _ray_y, '-', alpha=0.3, color='grey') _rect = mpatches.Rectangle(_x0, _cand_bbox.width, _cand_bbox.height, fill=False) dax.add_patch(_rect) plt.text(_x0[0], _x0[1], label, color='gray') plt.text(_x0[0], _x0[1], '{0}'.format(n_overlap)) # <<< debug <<< # pick winning candidate and add its bounding box to this list of # paths to avoid winner_abs_px = candidates_abs_px[sargs[0], :, :] xy_root_px = root_px[sargs[0], :] xy_root_dat = np.array(root_dat[sargs[0], :]) xy_txt_offset = np.array(winner_abs_px[:, 0] - xy_root_px) corners = Bbox(winner_abs_px.T).corners()[(0, 1, 3, 2), :] bbox_paths_px += [Path(corners)] # a = plt.annotate(label, xy=xy_root_dat, xycoords='data', # xytext=xy_txt_offset, textcoords="offset pixels", # color=color, **kwargs) a = ax.annotate(label, xy=xy_root_dat, xycoords='data', xytext=xy_txt_offset, textcoords="offset pixels", color=color, **kwargs) annotations.append(a) if rand_state is not None: np.random.set_state(rand_state) return annotations
# run eval fld = eval(salted_eqn, {"__builtins__": {}}, local_dict) # pylint: disable=eval-used try: fld.name = result_name fld.pretty_name = result_name except AttributeError: pass return fld if __name__ == "__main__": import os import viscid from viscid.plot import vpyplot as vlt import matplotlib.pyplot as plt enabled = True _d = os.path.dirname(viscid.__file__) _g = viscid.load_file(_d + "/../sample/sample.py_0.xdmf").get_grid() plt.subplot(211) _fld = evaluate(_g, "speed", "sqrt(vx**2 + vy**2 + sqrt(vz**4))") vlt.plot(_fld, show=False) plt.subplot(212) _fld = evaluate(_g, "speed", "sqrt(vx**2 + vy**2 + sqrt(vz**4))", try_numexpr=False) vlt.plot(_fld, show=True) ## ## EOF ##
def main(): mhd_type = "C" make_plots = 1 mhd_type = mhd_type.upper() if mhd_type.startswith("C"): if mhd_type in ("C",): f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf") elif mhd_type in ("C2", "C3"): f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf") else: raise ValueError() catol = 1e-8 rtol = 2e-6 elif mhd_type in ("F", "FORTRAN"): f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]") catol = 1e-8 rtol = 7e-2 else: raise ValueError() do_fill_dipole = True gslc = "x=-21.2j:12j, y=-11j:11j, z=-11j:11j" b = f['b_cc'][gslc] b1 = f['b_fc'][gslc] e_cc = f['e_cc'][gslc] e_ec = f['e_ec'][gslc] if do_fill_dipole: mask = viscid.make_spherical_mask(b, rmax=3.5) viscid.fill_dipole(b, mask=mask) mask = viscid.make_spherical_mask(b1, rmax=3.5) viscid.fill_dipole(b1, mask=mask) mask = None # seeds = viscid.SphericalCap(r=1.02, ntheta=64, nphi=32, angle0=17, angle=20, # philim=(100, 260), roll=-180.0) # seeds = viscid.SphericalCap(r=1.02, ntheta=64, nphi=32, angle0=17, angle=20, # philim=(0, 10), roll=0.0) seedsN = viscid.Sphere(r=1.02, ntheta=16, nphi=16, thetalim=(15, 25), philim=(0, 300), crd_system=b) seedsS = viscid.Sphere(r=1.02, ntheta=16, nphi=16, thetalim=(155, 165), philim=(0, 300), crd_system=b) bl_kwargs = dict(ibound=0.9, obound0=(-20, -10, -10), obound1=(11, 10, 10)) # blines_cc, topo_cc = viscid.streamlines(b, seeds, **bl_kwargs) blinesN_fc, topoN_fc = viscid.streamlines(b1, seedsN, **bl_kwargs) _, topoS_fc = viscid.streamlines(b1, seedsS, output=viscid.OUTPUT_TOPOLOGY, **bl_kwargs) if True: from viscid.plot import vlab mesh = vlab.mesh_from_seeds(seedsN, scalars=topoN_fc) mesh.actor.property.backface_culling = True # vlab.plot_lines(blines_cc, scalars="#000000", tube_radius=0.03) vlab.plot_lines(blinesN_fc, scalars=viscid.topology2color(topoN_fc), opacity=0.7) vlab.plot_blue_marble(r=1.0) vlab.plot_earth_3d(radius=1.01, crd_system=b, night_only=True, opacity=0.5) vlab.show() if True: vlt.subplot(121, projection='polar') vlt.plot(topoN_fc) vlt.subplot(122, projection='polar') vlt.plot(topoS_fc) vlt.show() return 0
def main(): xl, xh, nx = -1.0, 1.0, 41 yl, yh, ny = -1.5, 1.5, 41 zl, zh, nz = -2.0, 2.0, 41 x = np.linspace(xl, xh, nx) y = np.linspace(yl, yh, ny) z = np.linspace(zl, zh, nz) crds = coordinate.wrap_crds("nonuniform_cartesian", [('z', z), ('y', y), ('x', x)]) bx = field.empty(crds, name="$B_x$", center="Node") by = field.empty(crds, name="$B_y$", center="Node") bz = field.empty(crds, name="$B_z$", center="Node") fld = field.empty(crds, name="B", nr_comps=3, center="Node", layout="interlaced") X, Y, Z = crds.get_crds(shaped=True) x01, y01, z01 = 0.5, 0.5, 0.5 x02, y02, z02 = 0.5, 0.5, 0.5 x03, y03, z03 = 0.5, 0.5, 0.5 bx[:] = 0.0 + 1.0 * (X - x01) + 1.0 * (Y - y01) + 1.0 * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) + 1.0 * (Y - y01) * (Z - z01) + \ 1.0 * (X - x01) * (Y - y01) * (Z - z01) by[:] = 0.0 + 1.0 * (X - x02) - 1.0 * (Y - y02) + 1.0 * (Z - z02) + \ 1.0 * (X - x02) * (Y - y02) + 1.0 * (Y - y02) * (Z - z02) - \ 1.0 * (X - x02) * (Y - y02) * (Z - z02) bz[:] = 0.0 + 1.0 * (X - x03) + 1.0 * (Y - y03) - 1.0 * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) + 1.0 * (Y - y03) * (Z - z03) + \ 1.0 * (X - x03) * (Y - y03) * (Z - z03) fld[..., 0] = bx fld[..., 1] = by fld[..., 2] = bz fig = mlab.figure(size=(1150, 850), bgcolor=(1.0, 1.0, 1.0), fgcolor=(0.0, 0.0, 0.0)) f1_src = vlab.add_field(bx) f2_src = vlab.add_field(by) f3_src = vlab.add_field(bz) mlab.pipeline.iso_surface(f1_src, contours=[0.0], opacity=1.0, color=(1.0, 0.0, 0.0)) mlab.pipeline.iso_surface(f2_src, contours=[0.0], opacity=1.0, color=(0.0, 1.0, 0.0)) mlab.pipeline.iso_surface(f3_src, contours=[0.0], opacity=1.0, color=(0.0, 0.0, 1.0)) mlab.axes() mlab.show() nullpt = cycalc.interp_trilin(fld, [(0.5, 0.5, 0.5)]) print("f(0.5, 0.5, 0.5):", nullpt) _, axes = plt.subplots(4, 3, sharex=True, sharey=True) all_roots = [] positive_roots = [] ix = iy = iz = 0 for di, d in enumerate([0, -1]): #### XY face a1 = bx[iz + d, iy, ix] b1 = bx[iz + d, iy, ix - 1] - a1 c1 = bx[iz + d, iy - 1, ix] - a1 d1 = bx[iz + d, iy - 1, ix - 1] - c1 - b1 - a1 a2 = by[iz + d, iy, ix] b2 = by[iz + d, iy, ix - 1] - a2 c2 = by[iz + d, iy - 1, ix] - a2 d2 = by[iz + d, iy - 1, ix - 1] - c2 - b2 - a2 a3 = bz[iz + d, iy, ix] b3 = bz[iz + d, iy, ix - 1] - a3 c3 = bz[iz + d, iy - 1, ix] - a3 d3 = bz[iz + d, iy - 1, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt1, rt2, d)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt1, rt2, d)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (xh - xl) * roots1 + xl roots2 = (yh - yl) * roots2 + yl xp = np.linspace(0.0, 1.0, nx) vlt.plot(fld['x'], "z={0}i".format(d), ax=axes[0 + 2 * di, 0], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh)) y1 = - (a1 + b1 * xp) / (c1 + d1 * xp) plt.plot(x, (yh - yl) * y1 + yl, 'k') for i, xrt, yrt in zip(count(), roots1, roots2): plt.plot(xrt, yrt, markers[i]) vlt.plot(fld['y'], "z={0}i".format(d), ax=axes[1 + 2 * di, 0], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, yl, yh)) y2 = - (a2 + b2 * xp) / (c2 + d2 * xp) plt.plot(x, (yh - yl) * y2 + yl, 'k') for xrt, yrt in zip(roots1, roots2): plt.plot(xrt, yrt, markers[i]) #### YZ face a1 = bx[iz, iy, ix + d] b1 = bx[iz, iy - 1, ix + d] - a1 c1 = bx[iz - 1, iy, ix + d] - a1 d1 = bx[iz - 1, iy - 1, ix + d] - c1 - b1 - a1 a2 = by[iz, iy, ix + d] b2 = by[iz, iy - 1, ix + d] - a2 c2 = by[iz - 1, iy, ix + d] - a2 d2 = by[iz - 1, iy - 1, ix + d] - c2 - b2 - a2 a3 = bz[iz, iy, ix + d] b3 = bz[iz, iy - 1, ix + d] - a3 c3 = bz[iz - 1, iy, ix + d] - a3 d3 = bz[iz - 1, iy - 1, ix + d] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((d, rt1, rt2)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((d, rt1, rt2)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (yh - yl) * roots1 + yl roots2 = (zh - zl) * roots2 + zl yp = np.linspace(0.0, 1.0, ny) # plt.subplot(121) vlt.plot(fld['x'], "x={0}i".format(d), ax=axes[0 + 2 * di, 1], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh)) z1 = - (a1 + b1 * yp) / (c1 + d1 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) # plt.subplot(122) vlt.plot(fld['y'], "x={0}i".format(d), ax=axes[1 + 2 * di, 1], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(yl, yh, zl, zh)) z1 = - (a2 + b2 * yp) / (c2 + d2 * yp) plt.plot(y, (zh - zl) * z1 + zl, 'k') for i, yrt, zrt in zip(count(), roots1, roots2): plt.plot(yrt, zrt, markers[i]) #### ZX face a1 = bx[iz, iy + d, ix] b1 = bx[iz - 1, iy + d, ix] - a1 c1 = bx[iz, iy + d, ix - 1] - a1 d1 = bx[iz - 1, iy + d, ix - 1] - c1 - b1 - a1 a2 = by[iz, iy + d, ix] b2 = by[iz - 1, iy + d, ix] - a2 c2 = by[iz, iy + d, ix - 1] - a2 d2 = by[iz - 1, iy + d, ix - 1] - c2 - b2 - a2 a3 = bz[iz, iy + d, ix] b3 = bz[iz - 1, iy + d, ix] - a3 c3 = bz[iz, iy + d, ix - 1] - a3 d3 = bz[iz - 1, iy + d, ix - 1] - c3 - b3 - a3 roots1, roots2 = find_roots_face(a1, b1, c1, d1, a2, b2, c2, d2) # for rt1, rt2 in zip(roots1, roots2): # print("=") # print("fx", a1 + b1 * rt1 + c1 * rt2 + d1 * rt1 * rt2) # print("fy", a2 + b2 * rt1 + c2 * rt2 + d2 * rt1 * rt2) # print("=") # find f3 at the root points f3 = np.empty_like(roots1) markers = [None] * len(f3) for i, rt1, rt2 in zip(count(), roots1, roots2): f3[i] = a3 + b3 * rt1 + c3 * rt2 + d3 * rt1 * rt2 all_roots.append((rt2, d, rt1)) # switch order here if f3[i] >= 0.0: markers[i] = 'k^' positive_roots.append((rt2, d, rt1)) # switch order here else: markers[i] = 'w^' # rescale the roots to the original domain roots1 = (zh - zl) * roots1 + zl roots2 = (xh - xl) * roots2 + xl zp = np.linspace(0.0, 1.0, nz) # plt.subplot(121) vlt.plot(fld['x'], "y={0}i".format(d), ax=axes[0 + 2 * di, 2], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh)) x1 = - (a1 + b1 * zp) / (c1 + d1 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) # plt.subplot(121) vlt.plot(fld['y'], "y={0}i".format(d), ax=axes[1 + 2 * di, 2], plot_opts="x={0}_{1},y={2}_{3},lin_-10_10".format(xl, xh, zl, zh)) x1 = - (a2 + b2 * zp) / (c2 + d2 * zp) plt.plot(z, (xh - xl) * x1 + xl, 'k') for i, zrt, xrt in zip(count(), roots1, roots2): plt.plot(xrt, zrt, markers[i]) print("all:", len(all_roots), "positive:", len(positive_roots)) if len(all_roots) % 2 == 1: print("something is fishy, there are an odd number of root points " "on the surface of your cube, there is probably a degenerate " "line or surface of nulls") print("Null Point?", (len(positive_roots) % 2 == 1)) plt.show()
def _main(): f = viscid.load_file('~/dev/work/xi_fte_001/*.3d.*.xdmf') time_slice = ':' times = np.array([grid.time for grid in f.iter_times(time_slice)]) # XYZ coordinates of virtual satelites in warped "plasma sheet coords" x_sat_psc = np.linspace(-30, 0, 31) # X (GSE == PSC) y_sat_psc = np.linspace(-10, 10, 21) # Y (GSE == PSC) z_sat_psc = np.linspace(-2, 2, 5) # Z in PSC (z=0 is the plasma sheet) # the GSE z location of the virtual satelites in the warped plasma sheet # coordinates, so sat_z_gse_ts['x=5j, y=1j, z=0j'] would give the # plasma sheet location at x=5.0, y=1.0 # These fields depend on time because the plasma sheet moves in time sat_z_gse_ts = viscid.zeros([times, x_sat_psc, y_sat_psc, z_sat_psc], crd_names='txyz', center='node', name='PlasmaSheetZ_GSE') vx_ts = viscid.zeros_like(sat_z_gse_ts) bz_ts = viscid.zeros_like(sat_z_gse_ts) for itime, grid in enumerate(f.iter_times(time_slice)): print("Processing time slice", itime, grid.time) gse_slice = 'x=-35j:0j, y=-15j:15j, z=-6j:6j' bx = grid['bx'][gse_slice] bx_argmin = np.argmin(bx**2, axis=2) z_gse = bx.get_crd('z') # ps_zloc_gse is the plasma sheet z location along the GGCM grid x/y ps_z_gse = viscid.zeros_like(bx[:, :, 0:1]) ps_z_gse[...] = z_gse[bx_argmin] # Note: Here you could apply a gaussian filter to # ps_z_gse[:, :, 0].data in order to smooth the surface # if desired. Scipy / Scikit-Image have some functions # that do this # ok, we found the plasma sheet z GSE location on the actual GGCM # grid, but we just want a subset of that grid for our virtual # satelites, so just interpolate the ps z location to our subset ps_z_gse_subset = viscid.interp_trilin(ps_z_gse, sat_z_gse_ts[itime, :, :, 0:1], wrap=True) # now we know the plasma sheet z location in GSE, and how far # apart we want the satelites in z, so put those two things together # to get a bunch of satelite locations sat_z_gse_ts[itime] = ps_z_gse_subset.data + z_sat_psc.reshape(1, 1, -1) # make a seed generator that we can use to fill the vx and bz # time series for this instant in time sat_loc_gse = sat_z_gse_ts[itime].get_points() sat_loc_gse[2, :] = sat_z_gse_ts[itime].data.reshape(-1) # slicing the field before doing the interpolation makes this # faster for hdf5 data, but probably for other data too vx_ts[itime] = viscid.interp_trilin(grid['vx'][gse_slice], sat_loc_gse, wrap=False ).reshape(vx_ts.shape[1:]) bz_ts[itime] = viscid.interp_trilin(grid['bz'][gse_slice], sat_loc_gse, wrap=False ).reshape(bz_ts.shape[1:]) # 2d plots of the plasma sheet z location to make sure we did the # interpolation correctly if False: # pylint: disable=using-constant-test from viscid.plot import vpyplot as vlt fig, (ax0, ax1) = vlt.subplots(2, 1) # pylint: disable=unused-variable vlt.plot(ps_z_gse, ax=ax0, clim=(-5, 5)) vlt.plot(ps_z_gse_subset, ax=ax1, clim=(-5, 5)) vlt.auto_adjust_subplots() vlt.show() # make a 3d plot of the plasma sheet surface to verify that it # makes sense if True: # pylint: disable=using-constant-test from viscid.plot import vlab fig = vlab.figure(size=(1280, 800), bgcolor=(1, 1, 1), fgcolor=(0, 0, 0)) vlab.clf() # plot the plasma sheet coloured by vx # Note: points closer to x = 0 are unsightly since the plasma # sheet criteria starts to fall apart on the flanks, so # just remove the first few rows ps_z_gse_tail = ps_z_gse['x=:-2.25j'] ps_mesh_shape = [3, ps_z_gse_tail.shape[0], ps_z_gse_tail.shape[1]] ps_pts = ps_z_gse_tail.get_points().reshape(ps_mesh_shape) ps_pts[2, :, :] = ps_z_gse_tail[:, :, 0] plasma_sheet = viscid.RectilinearMeshPoints(ps_pts) ps_vx = viscid.interp_trilin(grid['vx'][gse_slice], plasma_sheet) _ = vlab.mesh_from_seeds(plasma_sheet, scalars=ps_vx) vx_clim = (-1400, 1400) vx_cmap = 'viridis' vlab.colorbar(title='Vx', clim=vx_clim, cmap=vx_cmap, nb_labels=5) # plot satelite locations as dots colored by Vx with the same # limits and color as the plasma sheet mesh sat3d = vlab.points3d(sat_loc_gse[0], sat_loc_gse[1], sat_loc_gse[2], vx_ts[itime].data.reshape(-1), scale_mode='none', scale_factor=0.2) vlab.apply_cmap(sat3d, clim=vx_clim, cmap=vx_cmap) # plot Earth for reference cotr = viscid.Cotr(dip_tilt=0.0) # pylint: disable=not-callable vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system='mhd') vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system='gse') vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-9, 3, -1]) vlab.savefig('plasma_sheet_3d_{0:02d}.png'.format(itime)) vlab.show() try: vlab.mlab.close(fig) except TypeError: pass # this happens if the figure is already closed # now do what we will with the time series... this is not a good # presentation of this data, but you get the idea from viscid.plot import vpyplot as vlt fig, axes = vlt.subplots(4, 4, figsize=(12, 12)) for ax_row, yloc in zip(axes, np.linspace(-5, 5, len(axes))[::-1]): for ax, xloc in zip(ax_row, np.linspace(4, 7, len(ax_row))): vlt.plot(vx_ts['x={0}j, y={1}j, z=0j'.format(xloc, yloc)], ax=ax) ax.set_ylabel('') vlt.plt.title('x = {0:g}, y = {1:g}'.format(xloc, yloc)) vlt.plt.suptitle('Vx [km/s]') vlt.auto_adjust_subplots() vlt.show() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) dtype = 'float32' ######################################################################## # hard core test transpose (since this is used for mapfield transforms) x = np.array(np.linspace( 1, -1, 9), dtype=dtype) y = np.array(np.linspace(-1, 1, 9), dtype=dtype) z = np.array(np.linspace(-1, 1, 9), dtype=dtype) vI1 = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='interlaced') vI2 = viscid.empty([z, y, x], nr_comps=3, name='V', center='cell', layout='interlaced', crd_names='zyx') vF1 = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='flat') vF2 = viscid.empty([z, y, x], nr_comps=3, name='V', center='cell', layout='flat', crd_names='zyx') X1, Y1, Z1 = vI1.get_crds_cc(shaped=True) X2, Y2, Z2 = vI2.get_crds_cc(shaped=True) for v in (vI1, vF1): v['x'] = (0.5 * X1) + (0.0 * Y1) + (0.0 * Z1) v['y'] = (0.0 * X1) + (0.5 * Y1) + (0.5 * Z1) v['z'] = (0.0 * X1) + (0.5 * Y1) + (0.5 * Z1) for v in (vI2, vF2): v['z'] = (0.5 * X2) + (0.5 * Y2) + (0.0 * Z2) v['y'] = (0.5 * X2) + (0.5 * Y2) + (0.0 * Z2) v['x'] = (0.0 * X2) + (0.0 * Y2) + (0.5 * Z2) assert_different(vI1, vI2) # test some straight up transposes of both interlaced and flat fields assert_similar(vI1.spatial_transpose(), vI2) assert_similar(vI1.ST, vI2) assert_similar(vF1.spatial_transpose(), vF2) assert_similar(vI1.transpose(), vF2) assert_similar(vI1.T, vF2) assert_different(vI1.transpose(), vI2) assert_similar(vF1.transpose(), vI2) assert_different(vF1.transpose(), vF2) assert_similar(np.transpose(vI1), vF2) assert_similar(np.transpose(vF1), vI2) # now specify specific axes using all 3 interfaces assert_similar(vI1.spatial_transpose('x', 'z', 'y'), vI1) assert_similar(np.transpose(vI1, axes=[0, 2, 1, 3]), vI1) assert_similar(vI1.transpose(0, 2, 1, 3), vI1) assert_similar(vF1.spatial_transpose('x', 'z', 'y'), vF1) assert_similar(np.transpose(vF1, axes=(0, 1, 3, 2)), vF1) assert_similar(vF1.transpose(0, 1, 3, 2), vF1) # now test swapaxes since that uses assert_similar(vI1.swapaxes(1, 2), vI1) assert_similar(np.swapaxes(vI1, 1, 2), vI1) assert_similar(vI1.swap_crd_axes('y', 'z'), vI1) ############################## # test some other mathy stuff x = np.array(np.linspace(-1, 1, 2), dtype=dtype) y = np.array(np.linspace(-2, 2, 30), dtype=dtype) z = np.array(np.linspace(-5, 5, 90), dtype=dtype) v = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='interlaced') X, Y, Z = v.get_crds_cc(shaped=True) v['x'] = (0.5 * X**2) + ( Y ) + (0.0 * Z ) v['y'] = (0.0 * X ) + (0.5 * Y**2) + (0.0 * Z ) v['z'] = (0.0 * X ) + (0.0 * Y ) + (0.5 * Z**2) mag = viscid.magnitude(v) mag2 = np.sqrt(np.sum(v * v, axis=v.nr_comp)) another = np.transpose(mag) plt.subplot(151) vlt.plot(v['x']) plt.subplot(152) vlt.plot(v['y']) plt.subplot(153) vlt.plot(mag) plt.subplot(154) vlt.plot(mag2) plt.subplot(155) vlt.plot(another) plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() return 0
def main(): mhd_type = "C3" make_plots = 1 mhd_type = mhd_type.upper() if mhd_type.startswith("C"): if mhd_type in ("C",): f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf") elif mhd_type in ("C2", "C3"): f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf") else: raise ValueError() catol = 1e-8 rtol = 2e-6 elif mhd_type in ("F", "FORTRAN"): f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]") catol = 1e-8 rtol = 7e-2 else: raise ValueError() b = f['b_cc'] b1 = f['b_fc'] e_cc = f['e_cc'] e_ec = f['e_ec'] # divb = f['divB'] # viscid.interact() if True: bD = viscid.empty_like(b) bD.data = np.array(b.data) b1D = viscid.empty_like(b1) b1D.data = np.array(b1.data) mask5 = viscid.make_spherical_mask(bD, rmax=3.5) mask1_5 = viscid.make_spherical_mask(bD, rmax=1.5) viscid.fill_dipole(bD, mask=mask5) viscid.set_in_region(bD, bD, 0.0, 0.0, mask=mask1_5, out=bD) # compare_vectors(_b, bD, make_plots=True) mask5 = viscid.make_spherical_mask(b1D, rmax=3.5) mask1_5 = viscid.make_spherical_mask(b1D, rmax=1.5) viscid.fill_dipole(b1D, mask=mask5) viscid.set_in_region(b1D, b1D, 0.0, 0.0, mask=mask1_5, out=b1D) compare_vectors(bD["x=1:-1, y=1:-1, z=1:-1"], b1D.as_cell_centered(), make_plots=True) # plt.clf() # dkwargs = dict(symmetric=True, earth=True, clim=(-1e2, 1e2)) # ax1 = plt.subplot(311) # vlt.plot(viscid.div(b1)['y=0j'], **dkwargs) # plt.subplot(312, sharex=ax1, sharey=ax1) # vlt.plot(viscid.div(b)['y=0j'], **dkwargs) # plt.subplot(313, sharex=ax1, sharey=ax1) # vlt.plot(viscid.div(b1D)['y=0j'], **dkwargs) # vlt.show() bD = b1D = mask5 = mask1_5 = None # straight up interpolate b1 to cc crds and compare with b if True: b1_cc = viscid.interp_trilin(b1, b).as_flat() viscid.set_in_region(b, b, alpha=0.0, beta=0.0, out=b, mask=viscid.make_spherical_mask(b, rmax=5.0)) viscid.set_in_region(b1_cc, b1_cc, alpha=0.0, beta=0.0, out=b1_cc, mask=viscid.make_spherical_mask(b1_cc, rmax=5.0)) compare_vectors(b, b1_cc, make_plots=True) # make div? if True: # make seeds for 1.5x supersampling b1 n = 128 seeds = viscid.Volume((5.1, -0.02, -5.0), (12.0, 0.02, 5.0), (n, 3, n)) # do interpolation onto new seeds b2 = viscid.interp_trilin(b1, seeds) div_b = viscid.div(b) div_b1 = viscid.div(b1) div_b2 = viscid.div(b2) viscid.set_in_region(div_b, div_b, alpha=0.0, beta=0.0, out=div_b, mask=viscid.make_spherical_mask(div_b, rmax=5.0)) viscid.set_in_region(div_b1, div_b1, alpha=0.0, beta=0.0, out=div_b1, mask=viscid.make_spherical_mask(div_b1, rmax=5.0)) viscid.set_in_region(div_b2, div_b2, alpha=0.0, beta=0.0, out=div_b2, mask=viscid.make_spherical_mask(div_b2, rmax=5.0)) viscid.set_in_region(divb, divb, alpha=0.0, beta=0.0, out=divb, mask=viscid.make_spherical_mask(divb, rmax=5.0)) plt.clf() ax1 = vlt.subplot(311) vlt.plot(div_b['y=0j'], symmetric=True, earth=True) vlt.subplot(312, sharex=ax1, sharey=ax1) # vlt.plot(div_b1['y=0j'], symmetric=True, earth=True) vlt.plot(div_b2['y=0j'], symmetric=True, earth=True) vlt.subplot(313, sharex=ax1, sharey=ax1) vlt.plot(divb['y=0j'], symmetric=True, earth=True) vlt.show() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) dtype = 'float32' ######################################################################## # hard core test transpose (since this is used for mapfield transforms) x = np.array(np.linspace(1, -1, 9), dtype=dtype) y = np.array(np.linspace(-1, 1, 9), dtype=dtype) z = np.array(np.linspace(-1, 1, 9), dtype=dtype) vI1 = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='interlaced') vI2 = viscid.empty([z, y, x], nr_comps=3, name='V', center='cell', layout='interlaced', crd_names='zyx') vF1 = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='flat') vF2 = viscid.empty([z, y, x], nr_comps=3, name='V', center='cell', layout='flat', crd_names='zyx') X1, Y1, Z1 = vI1.get_crds_cc(shaped=True) X2, Y2, Z2 = vI2.get_crds_cc(shaped=True) for v in (vI1, vF1): v['x'] = (0.5 * X1) + (0.0 * Y1) + (0.0 * Z1) v['y'] = (0.0 * X1) + (0.5 * Y1) + (0.5 * Z1) v['z'] = (0.0 * X1) + (0.5 * Y1) + (0.5 * Z1) for v in (vI2, vF2): v['z'] = (0.5 * X2) + (0.5 * Y2) + (0.0 * Z2) v['y'] = (0.5 * X2) + (0.5 * Y2) + (0.0 * Z2) v['x'] = (0.0 * X2) + (0.0 * Y2) + (0.5 * Z2) assert_different(vI1, vI2) # test some straight up transposes of both interlaced and flat fields assert_similar(vI1.spatial_transpose(), vI2) assert_similar(vI1.ST, vI2) assert_similar(vF1.spatial_transpose(), vF2) assert_similar(vI1.transpose(), vF2) assert_similar(vI1.T, vF2) assert_different(vI1.transpose(), vI2) assert_similar(vF1.transpose(), vI2) assert_different(vF1.transpose(), vF2) assert_similar(np.transpose(vI1), vF2) assert_similar(np.transpose(vF1), vI2) # now specify specific axes using all 3 interfaces assert_similar(vI1.spatial_transpose('x', 'z', 'y'), vI1) assert_similar(np.transpose(vI1, axes=[0, 2, 1, 3]), vI1) assert_similar(vI1.transpose(0, 2, 1, 3), vI1) assert_similar(vF1.spatial_transpose('x', 'z', 'y'), vF1) assert_similar(np.transpose(vF1, axes=(0, 1, 3, 2)), vF1) assert_similar(vF1.transpose(0, 1, 3, 2), vF1) # now test swapaxes since that uses assert_similar(vI1.swapaxes(1, 2), vI1) assert_similar(np.swapaxes(vI1, 1, 2), vI1) assert_similar(vI1.swap_crd_axes('y', 'z'), vI1) ############################## # test some other mathy stuff x = np.array(np.linspace(-1, 1, 2), dtype=dtype) y = np.array(np.linspace(-2, 2, 30), dtype=dtype) z = np.array(np.linspace(-5, 5, 90), dtype=dtype) v = viscid.empty([x, y, z], nr_comps=3, name='V', center='cell', layout='interlaced') X, Y, Z = v.get_crds_cc(shaped=True) v['x'] = (0.5 * X**2) + (Y) + (0.0 * Z) v['y'] = (0.0 * X) + (0.5 * Y**2) + (0.0 * Z) v['z'] = (0.0 * X) + (0.0 * Y) + (0.5 * Z**2) mag = viscid.magnitude(v) mag2 = np.sqrt(np.sum(v * v, axis=v.nr_comp)) another = np.transpose(mag) plt.subplot(151) vlt.plot(v['x']) plt.subplot(152) vlt.plot(v['y']) plt.subplot(153) vlt.plot(mag) plt.subplot(154) vlt.plot(mag2) plt.subplot(155) vlt.plot(another) plt.savefig(next_plot_fname(__file__)) if args.show: plt.show() return 0
def _do_multiplot(tind, grid, plot_vars=None, global_popts=None, kwopts=None, share_axes=False, show=False, subplot_params=None, first_run_result=None, first_run=False, **kwargs): import matplotlib.pyplot as plt from viscid.plot import vpyplot as vlt logger.info("Plotting timestep: %d, %g", tind, grid.time) if plot_vars is None: raise ValueError("No plot_vars given to `_do_multiplot` :(") if kwargs: logger.info("Unused kwargs: {0}".format(kwargs)) if kwopts is None: kwopts = {} transpose = kwopts.get("transpose", False) plot_size = kwopts.get("plot_size", None) dpi = kwopts.get("dpi", None) out_prefix = kwopts.get("out_prefix", None) out_format = kwopts.get("out_format", "png") selection = kwopts.get("selection", None) timeformat = kwopts.get("timeformat", ".02f") tighten = kwopts.get("tighten", False) # wicked hacky # subplot_params = kwopts.get("subplot_params", _subplot_params) # nrows = len(plot_vars) nrows = len([pv[0] for pv in plot_vars if not pv[0].startswith('^')]) ncols = 1 if transpose: nrows, ncols = ncols, nrows if nrows == 0: logger.warn("I have no variables to plot") return fig = plt.gcf() if plot_size is not None: fig.set_size_inches(*plot_size, forward=True) if dpi is not None: fig.set_dpi(dpi) shareax = None this_row = -1 for i, fld_meta in enumerate(plot_vars): if not fld_meta[0].startswith('^'): this_row += 1 same_axis = False else: same_axis = True fld_name_meta = fld_meta[0].lstrip('^') fld_name_split = fld_name_meta.split(',') if '=' in fld_name_split[0]: # if fld_name is actually an equation, assume # there's no slice, and commas are part of the # equation fld_name = ",".join(fld_name_split) fld_slc = "" else: fld_name = fld_name_split[0] fld_slc = ",".join(fld_name_split[1:]) if selection is not None: # fld_slc += ",{0}".format(selection) if fld_slc != "": fld_slc = ",".join([fld_slc, selection]) else: fld_slc = selection if fld_slc.strip() == "": fld_slc = None # print("fld_time:", fld.time) if this_row < 0: raise ValueError("first plot can't begin with a +") row = this_row col = 0 if transpose: row, col = col, row if not same_axis: ax = plt.subplot2grid((nrows, ncols), (row, col), sharex=shareax, sharey=shareax) if i == 0 and share_axes: shareax = ax if "plot_opts" not in fld_meta[1]: fld_meta[1]["plot_opts"] = global_popts elif global_popts is not None: fld_meta[1]["plot_opts"] = "{0},{1}".format( fld_meta[1]["plot_opts"], global_popts) with grid.get_field(fld_name, slc=fld_slc) as fld: vlt.plot(fld, masknan=True, **fld_meta[1]) # print("fld cache", grid[fld_meta[0]]._cache) if timeformat and timeformat.lower() != "none": plt.suptitle(grid.format_time(timeformat)) # for adjusting subplots / tight_layout and applying the various # hacks to keep plots from dancing around in movies if not subplot_params and first_run_result: subplot_params = first_run_result if tighten: tighten = dict(rect=[0, 0.03, 1, 0.90]) ret = vlt.auto_adjust_subplots(tight_layout=tighten, subplot_params=subplot_params) if not first_run: ret = None if out_prefix: plt.savefig("{0}_{1:06d}.{2}".format(out_prefix, tind + 1, out_format)) if show: plt.show() plt.clf() return ret
def main(): mhd_type = "C" make_plots = 1 test_fc = 1 test_ec = 1 test_div = 1 test_interp = 1 test_streamline = 1 mhd_type = mhd_type.upper() if mhd_type.startswith("C"): if mhd_type in ("C",): f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf") elif mhd_type in ("C2", "C3"): f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf") else: raise ValueError() catol = 1e-8 rtol = 5e-6 elif mhd_type in ("F", "FORTRAN"): f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]") catol = 1e-8 rtol = 7e-2 else: raise ValueError() ISLICE = slice(None) # ISLICE = 'y=0j:0.15j' # ################# # # test out fc2cc if test_fc: b = f['b'][ISLICE] b1 = f['b1'][ISLICE] compare_vectors(b, b1, viscid.fc2cc, catol=catol, rtol=rtol, make_plots=make_plots) ################# # test out ec2cc if test_ec: e_cc = f['e_cc'][ISLICE] e_ec = f['e_ec'][ISLICE] if mhd_type not in ("F", "FORTRAN"): compare_vectors(e_cc, e_ec, viscid.ec2cc, catol=catol, rtol=rtol, make_plots=make_plots) ################# # test out divfc # Note: Relative error on Div B is meaningless b/c the coordinates # are not the same up to order (dx/4) I think. You can see this # since (fcdiv - divb_trimmed) is both noisy and stripy if test_div: bnd = 0 if mhd_type not in ("F", "FORTRAN"): b1 = f['b1'][ISLICE] divb = f['divB'][ISLICE] if bnd: trimmed = divb else: trimmed = divb['x=1:-1, y=1:-1, z=1:-1'] b1mag = viscid.magnitude(viscid.fc2cc(b1, bnd=bnd)) divb1 = viscid.div_fc(b1, bnd=bnd) viscid.set_in_region(trimmed, trimmed, alpha=0.0, beta=0.0, out=trimmed, mask=viscid.make_spherical_mask(trimmed, rmax=5.0)) viscid.set_in_region(divb1, divb1, alpha=0.0, beta=0.0, out=divb1, mask=viscid.make_spherical_mask(divb1, rmax=5.0)) reldiff = (divb1 - trimmed) / b1mag reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"] reldiff.name = divb1.name + " - " + trimmed.name reldiff.pretty_name = divb1.pretty_name + " - " + trimmed.pretty_name abs_max_rel_diff = np.nanmax(np.abs(reldiff)) max_crd_diff = [0.0] * 3 for i, d in enumerate('xyz'): max_crd_diff[i] = np.max(trimmed.get_crd(d) - divb1.get_crd(d)) print("divB max absolute relative diff: {0:.3e} " "(crds: X: {1[0]:.3e}, Y: {1[1]:.3e}, Z: {1[2]:.3e})" "".format(abs_max_rel_diff, max_crd_diff)) # plot differences? if make_plots: ax1 = plt.subplot(311) vlt.plot(divb['y=0j'], symmetric=True, earth=True) plt.subplot(312, sharex=ax1, sharey=ax1) vlt.plot(divb1['y=0j'], symmetric=True, earth=True) plt.subplot(313, sharex=ax1, sharey=ax1) vlt.plot(reldiff['y=0j'], symmetric=True, earth=True) vlt.show() # Since the coordinates will be different by order dx^2 (i think), # there is no way to compare the divB from simulation with the # one we get here. However, they should be the same up to a few %, and # down to noise level with stripes of enhanced noise. These stripes # are the errors in the coordinate values (since the output only # gives us weird nc = averaged cc locations) # # if abs_max_rel_diff > rtol or np.any(np.abs(max_crd_diff) > catol): # raise RuntimeError("Tolerance exceeded on divB calculation") if test_streamline: b_cc = f['b_cc']['x=-40j:12j, y=-15j:15j, z=-15j:15j'] b_fc = f['b_fc']['x=-40j:12j, y=-15j:15j, z=-15j:15j'] cotr = viscid.cotr.Cotr() r_mask = 3.0 # set b_cc to dipole inside some sphere isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask) moment = cotr.get_dipole_moment(crd_system=b_cc) viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask) # set b_fc to dipole inside some sphere isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask) moment = cotr.get_dipole_moment(crd_system=b_fc) viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask) seeds = viscid.Volume([-10, 0, -5], [10, 0, 5], (16, 1, 3)) sl_kwargs = dict(ibound=1.0, method=viscid.EULER1A) lines_cc, topo_cc = viscid.calc_streamlines(b_cc, seeds, **sl_kwargs) lines_fc, topo_fc = viscid.calc_streamlines(b_fc, seeds, **sl_kwargs) if make_plots: plt.figure(figsize=(10, 6)) ax0 = plt.subplot(211) topo_cc_colors = viscid.topology2color(topo_cc) vlt.plot(f['pp']['y=0j'], logscale=True, earth=True, cmap='plasma') vlt.plot2d_lines(lines_cc, topo_cc_colors, symdir='y') ax0 = plt.subplot(212, sharex=ax0, sharey=ax0) topo_fc_colors = viscid.topology2color(topo_fc) vlt.plot(f['pp']['y=0j'], logscale=True, earth=True, cmap='plasma') vlt.plot2d_lines(lines_fc, topo_fc_colors, symdir='y') plt.xlim(-20, 10) plt.ylim(-10, 10) vlt.auto_adjust_subplots() vlt.show() if test_interp: # test interpolation with E . B / B b_cc = f['b_cc'] b_fc = f['b_fc'] e_cc = f['e_cc'] e_ec = f['e_ec'] cotr = viscid.cotr.Cotr() r_mask = 3.0 # set b_cc to dipole inside some sphere isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask) moment = cotr.get_dipole_moment(crd_system=b_cc) viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask) # set b_fc to dipole inside some sphere isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask) moment = cotr.get_dipole_moment(crd_system=b_fc) viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask) # zero out e_cc inside some sphere viscid.set_in_region(e_cc, e_cc, alpha=0.0, beta=0.0, out=e_cc, mask=viscid.make_spherical_mask(e_cc, rmax=r_mask)) # zero out e_ec inside some sphere viscid.set_in_region(e_ec, e_ec, alpha=0.0, beta=0.0, out=e_ec, mask=viscid.make_spherical_mask(e_ec, rmax=r_mask)) tmp = viscid.empty([np.linspace(-10, 10, 64), np.linspace(-10, 10, 64), np.linspace(-10, 10, 64)], center="Cell") b_cc_interp = viscid.interp_linear(b_cc, tmp) b_fc_interp = viscid.interp_linear(b_fc, tmp) e_cc_interp = viscid.interp_linear(e_cc, tmp) e_ec_interp = viscid.interp_linear(e_ec, tmp) epar_cc = viscid.dot(e_cc_interp, b_cc_interp) / viscid.magnitude(b_cc_interp) epar_ecfc = viscid.dot(e_ec_interp, b_fc_interp) / viscid.magnitude(b_fc_interp) if make_plots: # plt.figure() # ax0 = plt.subplot(121) # vlt.plot(b_cc['x']['y=0j'], clim=(-40, 40)) # plt.subplot(122, sharex=ax0, sharey=ax0) # vlt.plot(b_fc['x']['y=0j'], clim=(-40, 40)) # vlt.show() plt.figure(figsize=(14, 5)) ax0 = plt.subplot(131) vlt.plot(epar_cc['y=0j'], symmetric=True, cbarlabel="Epar CC") plt.subplot(132, sharex=ax0, sharey=ax0) vlt.plot(epar_ecfc['y=0j'], symmetric=True, cbarlabel="Epar ECFC") plt.subplot(133, sharex=ax0, sharey=ax0) vlt.plot(((epar_cc - epar_ecfc) / epar_cc)['y=0j'], clim=(-10, 10), cbarlabel="Rel Diff") vlt.auto_adjust_subplots() vlt.show() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--prof", action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) b = viscid.make_dipole(l=(-5, -5, -5), h=(5, 5, 5), n=(255, 255, 127), m=(0, 0, -1)) b2 = np.sum(b * b, axis=b.nr_comp) if args.prof: print("Without boundaries") viscid.timeit(viscid.grad, b2, bnd=False, timeit_repeat=10, timeit_print_stats=True) print("With boundaries") viscid.timeit(viscid.grad, b2, bnd=True, timeit_repeat=10, timeit_print_stats=True) grad_b2 = viscid.grad(b2) grad_b2.pretty_name = r"$\nabla$ B$^2$" conv = viscid.convective_deriv(b) conv.pretty_name = r"(B $\cdot \nabla$) B" _ = plt.figure(figsize=(9, 4.2)) ax1 = vlt.subplot(231) vlt.plot(b2['z=0f'], logscale=True) vlt.plot(b2['z=0f'], logscale=True, style='contour', levels=10, colors='grey') # vlt.plot2d_quiver(viscid.normalize(b['z=0f']), step=16, pivot='mid') ax2 = vlt.subplot(234) vlt.plot(b2['y=0f'], logscale=True) vlt.plot(b2['y=0f'], logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(b['y=0f'], preferred='numpy'), step=16, pivot='mid') vlt.subplot(232, sharex=ax1, sharey=ax1) vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0f']), logscale=True) vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0f']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(grad_b2['z=0f']), step=16, pivot='mid') vlt.subplot(235, sharex=ax2, sharey=ax2) vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0f']), logscale=True) vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0f']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(grad_b2['y=0f']), step=16, pivot='mid') vlt.subplot(233, sharex=ax1, sharey=ax1) vlt.plot(viscid.magnitude(conv['z=0f']), logscale=True) vlt.plot(viscid.magnitude(conv['z=0f']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(conv['z=0f']), step=16, pivot='mid') vlt.subplot(236, sharex=ax2, sharey=ax2) vlt.plot(viscid.magnitude(conv['y=0f']), logscale=True) vlt.plot(viscid.magnitude(conv['y=0f']), logscale=True, style='contour', levels=10, colors='grey') vlt.plot2d_quiver(viscid.normalize(conv['y=0f']), step=16, pivot='mid') vlt.auto_adjust_subplots() plt.savefig(next_plot_fname(__file__)) if args.show: vlt.show() return 0