def __cotr__(self): if self.has_info("dipoletime"): return viscid.Cotr(time=self.find_info('dipoletime'), notilt1967=True) elif self.has_info("basetime"): return viscid.Cotr(time=self.find_info('basetime'), notilt1967=True) else: return NotImplemented
def check(): """Runtime check compiled modules""" import os import sys import numpy as np import viscid ret = 0 check_version() print() ##################################################### # run streamline calculation (checks cython modules) try: cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0) # pylint: disable=not-callable m = cotr.get_dipole_moment(crd_system='gse') seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25, nphi=25, thetalim=(5, 90), philim=(5, 360), phi_endpoint=False) B = viscid.make_dipole(m=m, crd_system='gse', n=(32, 32, 32), l=(-25, -25, -25), h=(25, 25, 25), dtype='f8') lines, _ = viscid.calc_streamlines(B, seeds, ibound=1.0) for line in lines: if np.any(np.isnan(line)): raise ValueError("NaN in line") print("Cython module ran successfully") except Exception as e: print("Cython module has runtime errors.") print(str(e)) ret |= (1 << 0) print() #################################### # load a jrrle file (checks fortran) try: f3d = viscid.load_file( os.path.join(viscid.sample_dir, 'sample_jrrle.3df.*')) _ = np.array(f3d['pp'].data) print("Fortran module ran successfully") except Exception as e: print("Fortran module has runtime errors.") print(str(e)) ret |= (1 << 1) print() return ret
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--notwo", dest='notwo', action="store_true") parser.add_argument("--nothree", dest='nothree', action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) plot2d = not args.notwo plot3d = not args.nothree # ################################################# # viscid.logger.info("Testing field lines on 2d field...") B = viscid.make_dipole(twod=True) line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10) obound0 = np.array([-4, -4, -4], dtype=B.data.dtype) obound1 = np.array([4, 4, 4], dtype=B.data.dtype) run_test(B, line, plot2d=plot2d, plot3d=plot3d, title='2D', show=args.show, ibound=0.07, obound0=obound0, obound1=obound1) ################################################# viscid.logger.info("Testing field lines on 3d field...") B = viscid.make_dipole(m=[0.2, 0.3, -0.9]) sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10) obound0 = np.array([-4, -4, -4], dtype=B.data.dtype) obound1 = np.array([4, 4, 4], dtype=B.data.dtype) run_test(B, sphere, plot2d=plot2d, plot3d=plot3d, title='3D', show=args.show, ibound=0.12, obound0=obound0, obound1=obound1, method=viscid.RK12) # The Remainder of this test makes sure higher order methods are indeed # more accurate than lower order methods... this could find a bug in # the integrators ################################################## # test accuracy of streamlines in an ideal dipole cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0) # pylint: disable=not-callable m = cotr.get_dipole_moment(crd_system='gse') seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25, nphi=25, thetalim=(5, 90), philim=(5, 360), phi_endpoint=False) B = viscid.make_dipole(m=m, crd_system='gse', n=(256, 256, 256), l=(-25, -25, -25), h=(25, 25, 25), dtype='f8') seeds_xyz = seeds.get_points() # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :] seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :] e1_lines, e1_lsps, t_e1 = lines_and_lsps(B, seeds, method='euler1', ibound=1.0, cotr=cotr) rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B, seeds, method='rk2', ibound=1.0, cotr=cotr) rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B, seeds, method='rk4', ibound=1.0, cotr=cotr) e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B, seeds, method='euler1a', ibound=1.0, cotr=cotr) rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B, seeds, method='rk12', ibound=1.0, cotr=cotr) rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B, seeds, method='rk45', ibound=1.0, cotr=cotr) def _calc_rel_diff(_lsp, _ideal_lsp, _d): _diffs = [] for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T): _a = _ilsp[_d, :] _b = _iideal[_d] _diffs.append((_a - _b) / _b) return _diffs lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0) phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1) lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0) phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1) lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0) phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1) lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0) phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1) lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0) phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1) lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0) phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1) methods = [ 'Euler 1', 'Runge Kutta 2', 'Runge Kutta 4', 'Euler 1 Adaptive Step', 'Runge Kutta 12 Adaptive Step', 'Runge Kutta 45 Adaptive Step' ] wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45] all_lines = [ e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines, rk45_lines ] all_lshell_diffs = [ lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4, lshell_diff_e1a, lshell_diff_rk12, lshell_diff_rk45 ] lshell_diffs = [ np.abs(np.concatenate(lshell_diff_e1, axis=0)), np.abs(np.concatenate(lshell_diff_rk2, axis=0)), np.abs(np.concatenate(lshell_diff_rk4, axis=0)), np.abs(np.concatenate(lshell_diff_e1a, axis=0)), np.abs(np.concatenate(lshell_diff_rk12, axis=0)), np.abs(np.concatenate(lshell_diff_rk45, axis=0)) ] phi_diffs = [ np.abs(np.concatenate(phi_diff_e1, axis=0)), np.abs(np.concatenate(phi_diff_rk2, axis=0)), np.abs(np.concatenate(phi_diff_rk4, axis=0)), np.abs(np.concatenate(phi_diff_e1a, axis=0)), np.abs(np.concatenate(phi_diff_rk12, axis=0)), np.abs(np.concatenate(phi_diff_rk45, axis=0)) ] npts = [len(lsd) for lsd in lshell_diffs] lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs] # # 3D DEBUG PLOT:: for really getting under the covers # vlab.clf() # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120, # thetalim=(15, 165), philim=(0, 360)) # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :] # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120, # thetalim=(15, 165), philim=(0, 360)) # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :] # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120, # thetalim=(15, 165), philim=(0, 360)) # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :] # clim = [2.0, 6.0] # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True) # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5) # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25) # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps], # clim=clim, logscale=True) # vlab.colorbar(title="L-Shell") # vlab.show() assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler" assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2" assert lshell_75[3] < lshell_75[ 0], "Euler 1a should have less error than Euler 1" assert lshell_75[4] < lshell_75[ 0], "RK 12 should have less error than Euler 1" assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2" try: if not plot2d: raise ImportError from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt # stats on error for all points on all lines _ = plt.figure(figsize=(15, 8)) ax1 = vlt.subplot(121) v = plt.violinplot(lshell_diffs, showextrema=False, showmedians=False, vert=False) colors = set_violin_colors(v) xl, xh = plt.gca().get_xlim() for i, txt, c in zip(count(), methods, colors): t_txt = ", took {0:.2e} seconds".format(wall_ts[i]) stat_txt = format_data_range(lshell_diffs[i]) plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c) plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c) ax1.get_yaxis().set_visible(False) plt.title('L-Shell') plt.xlabel('Relative Difference from Ideal (as fraction)') ax2 = vlt.subplot(122) v = plt.violinplot(phi_diffs, showextrema=False, showmedians=False, vert=False) colors = set_violin_colors(v) xl, xh = plt.gca().get_xlim() for i, txt, c in zip(count(), methods, colors): t_txt = ", took {0:.2e} seconds".format(wall_ts[i]) stat_txt = format_data_range(phi_diffs[i]) plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c) plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c) ax2.get_yaxis().set_visible(False) plt.title('Longitude') plt.xlabel('Relative Difference from Ideal (as fraction)') vlt.auto_adjust_subplots() vlt.savefig(next_plot_fname(__file__, series='q2')) if args.show: vlt.show() # stats for ds for all points on all lines _ = plt.figure(figsize=(10, 8)) ax1 = vlt.subplot(111) ds = [ np.concatenate([ np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0) for _l in lines ]) for lines in all_lines ] v = plt.violinplot(ds, showextrema=False, showmedians=False, vert=False) colors = set_violin_colors(v) xl, xh = plt.gca().get_xlim() for i, txt, c in zip(count(), methods, colors): stat_txt = format_data_range(ds[i]) plt.text(xl + 0.01 * (xh - xl), i + 1.15, txt, color=c) plt.text(xl + 0.01 * (xh - xl), i + 0.85, stat_txt, color=c) ax1.get_yaxis().set_visible(False) plt.xscale('log') plt.title('Step Size') plt.xlabel('Absolute Step Size') vlt.savefig(next_plot_fname(__file__, series='q2')) if args.show: vlt.show() # random other information _ = plt.figure(figsize=(13, 10)) ## wall time for each method vlt.subplot(221) plt.scatter(range(len(methods)), wall_ts, color=colors, s=150, marker='s', edgecolors='none') for i, meth in enumerate(methods): meth = meth.replace(" Adaptive Step", "\nAdaptive Step") plt.annotate(meth, (i, wall_ts[i]), xytext=(0, 15.0), color=colors[i], horizontalalignment='center', verticalalignment='bottom', textcoords='offset points') plt.ylabel("Wall Time (s)") x_padding = 0.5 plt.xlim(-x_padding, len(methods) - x_padding) yl, yh = np.min(wall_ts), np.max(wall_ts) y_padding = 0.4 * (yh - yl) plt.ylim(yl - y_padding, yh + y_padding) plt.gca().get_xaxis().set_visible(False) for _which in ('right', 'top'): plt.gca().spines[_which].set_color('none') ## number of points calculated for each method vlt.subplot(222) plt.scatter(range(len(methods)), npts, color=colors, s=150, marker='s', edgecolors='none') for i, meth in enumerate(methods): meth = meth.replace(" Adaptive Step", "\nAdaptive Step") plt.annotate(meth, (i, npts[i]), xytext=(0, 15.0), color=colors[i], horizontalalignment='center', verticalalignment='bottom', textcoords='offset points') plt.ylabel("Number of Streamline Points Calculated") x_padding = 0.5 plt.xlim(-x_padding, len(methods) - x_padding) yl, yh = np.min(npts), np.max(npts) y_padding = 0.4 * (yh - yl) plt.ylim(yl - y_padding, yh + y_padding) plt.gca().get_xaxis().set_visible(False) for _which in ('right', 'top'): plt.gca().spines[_which].set_color('none') ## Wall time per segment, this should show the overhead of the method vlt.subplot(223) wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts) plt.scatter(range(len(methods)), wall_t_per_seg, color=colors, s=150, marker='s', edgecolors='none') for i, meth in enumerate(methods): meth = meth.replace(" Adaptive Step", "\nAdaptive Step") plt.annotate(meth, (i, wall_t_per_seg[i]), xytext=(0, 15.0), color=colors[i], horizontalalignment='center', verticalalignment='bottom', textcoords='offset points') plt.ylabel("Wall Time Per Line Segment") x_padding = 0.5 plt.xlim(-x_padding, len(methods) - x_padding) yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg) y_padding = 0.4 * (yh - yl) plt.ylim(yl - y_padding, yh + y_padding) plt.gca().get_xaxis().set_visible(False) plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt) for _which in ('right', 'top'): plt.gca().spines[_which].set_color('none') ## 75th percentile of l-shell error for each method vlt.subplot(224) plt.scatter(range(len(methods)), lshell_75, color=colors, s=150, marker='s', edgecolors='none') plt.yscale('log') for i, meth in enumerate(methods): meth = meth.replace(" Adaptive Step", "\nAdaptive Step") plt.annotate(meth, (i, lshell_75[i]), xytext=(0, 15.0), color=colors[i], horizontalalignment='center', verticalalignment='bottom', textcoords='offset points') plt.ylabel("75th Percentile of Relative L-Shell Error") x_padding = 0.5 plt.xlim(-x_padding, len(methods) - x_padding) ymin, ymax = np.min(lshell_75), np.max(lshell_75) plt.ylim(0.75 * ymin, 2.5 * ymax) plt.gca().get_xaxis().set_visible(False) for _which in ('right', 'top'): plt.gca().spines[_which].set_color('none') vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15)) vlt.savefig(next_plot_fname(__file__, series='q2')) if args.show: vlt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import vlab try: fig = _global_ns['figure'] vlab.clf() except KeyError: fig = vlab.figure(size=[1200, 800], offscreen=not args.show, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0)) _global_ns['figure'] = fig for i, method in zip(count(), methods): # if i in (3, 4): # next_plot_fname(__file__, series='q3') # print(i, "::", [line.shape[1] for line in all_lines[i]]) # # continue vlab.clf() _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]] vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff) vlab.colorbar(title="Relative L-Shell Error (as fraction)") vlab.title(method, size=0.5) vlab.orientation_axes() vlab.view(azimuth=40, elevation=140, distance=80.0, focalpoint=[0, 0, 0]) vlab.savefig(next_plot_fname(__file__, series='q3')) if args.show: vlab.show() except ImportError: pass # prevent weird xorg bad-instructions on tear down if 'figure' in _global_ns and _global_ns['figure'] is not None: from viscid.plot import vlab vlab.mlab.close(_global_ns['figure']) return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) viscid.logger.setLevel(viscid.logging.DEBUG) args.show = False cotr = viscid.Cotr(dip_tilt=20.0, dip_gsm=15.0) # pylint: disable=not-callable b = viscid.make_dipole(m=cotr.get_dipole_moment(), n=(32, 32, 32)) seeds = viscid.Circle(n=5, r=1.5, pole=[0, 0, 1]) lines, topo = viscid.calc_streamlines(b, seeds, ibound=1.4, method='rk45') for i in range(2): # make sure this works for lines with 0, 1, 2, 3 vertices if i == 1: lines[1] = lines[2][:, :0] lines[2] = lines[2][:, :1] lines[3] = lines[3][:, :2] lines[4] = lines[4][:, :3] viscid.logger.debug('---') viscid.logger.debug('{0}'.format(len(lines))) for line in lines: viscid.logger.debug('line shape: {0}'.format(line.shape)) viscid.logger.debug('---') do_test(lines, scalars=None, txt='given None', show=args.show) do_test(lines, scalars='#ff0000', txt='given a single 24bit rgb hex color', show=args.show) do_test(lines, scalars='#ff000066', txt='given a single 32bit rgba hex color', show=args.show) do_test(lines, scalars='#f00', txt='given a single 12bit rgb hex color', show=args.show) do_test(lines, scalars='#f006', txt='given a single 16bit rgba hex color', show=args.show) do_test(lines, scalars=['#ff0000', '#cc0000', '#aa0000', '#880000', '#660000'], txt='given a list of Nlines 24bit rgb hex colors', show=args.show) do_test(lines, scalars=['#ff000066', '#cc000066', '#aa000066', '#88000066', '#66000066'], txt='given a list of Nlines 32bit rgba hex colors', show=args.show) do_test(lines, scalars=['#f00', '#c00', '#a00', '#800', '#600'], txt='given a list of Nlines 12bit rgb hex colors', show=args.show) do_test(lines, scalars=['#f00a', '#c009', '#a008', '#8007', '#6006'], txt='given a list of Nlines 16bit rgba hex colors', show=args.show) do_test(lines, scalars=[0.8, 0.0, 0.2], txt='given a single rgb [0..1] color', show=args.show) do_test(lines, scalars=[0.8, 0.0, 0.2, 0.8], txt='given a single rgba [0..1] color', show=args.show) do_test(lines, scalars=[(0.8, 0.0, 0.2), (0.7, 0.0, 0.3), (0.6, 0.0, 0.4), (0.5, 0.0, 0.5), (0.4, 0.0, 0.6)], txt='given a list of Nlines rgb [0..1] tuples', show=args.show) do_test(lines, scalars=[(0.8, 0.0, 0.2, 1.0), (0.7, 0.0, 0.3, 0.9), (0.6, 0.0, 0.4, 0.8), (0.5, 0.0, 0.5, 0.7), (0.4, 0.0, 0.6, 0.6)], txt='given a list of Nlines rgba [0..1] tuples', show=args.show) do_test(lines, scalars=[250, 0, 250], txt='given a single rgb [0..255] color', show=args.show) do_test(lines, scalars=[250, 0, 250, 190], txt='given a single rgba [0..255] color', show=args.show) do_test(lines, scalars=[(204, 0, 51), (179, 0, 77), (153, 0, 102), (127, 0, 127), (0.4, 0, 102)], txt='given a list of Nlines rgb [0..255] tuples', show=args.show) do_test(lines, scalars=[(204, 0, 51, 255), (179, 0, 77, 230), (153, 0, 102, 204), (127, 0, 127, 179), (102, 0, 102, 153)], txt='given a list of Nlines rgba [0..255] tuples', show=args.show) do_test(lines, scalars=['#ff000088', 'blue', 'lavenderblush', 'c', '#4f4'], txt='given a mix of color hex/html color names', show=args.show) do_test(lines, scalars=topo, txt='scalars == topo value', show=args.show) do_test(lines, scalars=viscid.topology2color(topo), txt='scalars == topo2color value', show=args.show) do_test(lines, scalars=np.log(viscid.magnitude(b)), txt='given bmag', show=args.show) # prevent weird xorg bad-instructions on tear down if 'figure' in _global_ns and _global_ns['figure'] is not None: from viscid.plot import vlab vlab.mlab.close(_global_ns['figure']) return 0
def _main(): f = viscid.load_file('~/dev/work/xi_fte_001/*.3d.*.xdmf') time_slice = ':' times = np.array([grid.time for grid in f.iter_times(time_slice)]) # XYZ coordinates of virtual satelites in warped "plasma sheet coords" x_sat_psc = np.linspace(-30, 0, 31) # X (GSE == PSC) y_sat_psc = np.linspace(-10, 10, 21) # Y (GSE == PSC) z_sat_psc = np.linspace(-2, 2, 5) # Z in PSC (z=0 is the plasma sheet) # the GSE z location of the virtual satelites in the warped plasma sheet # coordinates, so sat_z_gse_ts['x=5j, y=1j, z=0j'] would give the # plasma sheet location at x=5.0, y=1.0 # These fields depend on time because the plasma sheet moves in time sat_z_gse_ts = viscid.zeros([times, x_sat_psc, y_sat_psc, z_sat_psc], crd_names='txyz', center='node', name='PlasmaSheetZ_GSE') vx_ts = viscid.zeros_like(sat_z_gse_ts) bz_ts = viscid.zeros_like(sat_z_gse_ts) for itime, grid in enumerate(f.iter_times(time_slice)): print("Processing time slice", itime, grid.time) gse_slice = 'x=-35j:0j, y=-15j:15j, z=-6j:6j' bx = grid['bx'][gse_slice] bx_argmin = np.argmin(bx**2, axis=2) z_gse = bx.get_crd('z') # ps_zloc_gse is the plasma sheet z location along the GGCM grid x/y ps_z_gse = viscid.zeros_like(bx[:, :, 0:1]) ps_z_gse[...] = z_gse[bx_argmin] # Note: Here you could apply a gaussian filter to # ps_z_gse[:, :, 0].data in order to smooth the surface # if desired. Scipy / Scikit-Image have some functions # that do this # ok, we found the plasma sheet z GSE location on the actual GGCM # grid, but we just want a subset of that grid for our virtual # satelites, so just interpolate the ps z location to our subset ps_z_gse_subset = viscid.interp_trilin(ps_z_gse, sat_z_gse_ts[itime, :, :, 0:1], wrap=True) # now we know the plasma sheet z location in GSE, and how far # apart we want the satelites in z, so put those two things together # to get a bunch of satelite locations sat_z_gse_ts[itime] = ps_z_gse_subset.data + z_sat_psc.reshape(1, 1, -1) # make a seed generator that we can use to fill the vx and bz # time series for this instant in time sat_loc_gse = sat_z_gse_ts[itime].get_points() sat_loc_gse[2, :] = sat_z_gse_ts[itime].data.reshape(-1) # slicing the field before doing the interpolation makes this # faster for hdf5 data, but probably for other data too vx_ts[itime] = viscid.interp_trilin(grid['vx'][gse_slice], sat_loc_gse, wrap=False ).reshape(vx_ts.shape[1:]) bz_ts[itime] = viscid.interp_trilin(grid['bz'][gse_slice], sat_loc_gse, wrap=False ).reshape(bz_ts.shape[1:]) # 2d plots of the plasma sheet z location to make sure we did the # interpolation correctly if False: # pylint: disable=using-constant-test from viscid.plot import vpyplot as vlt fig, (ax0, ax1) = vlt.subplots(2, 1) # pylint: disable=unused-variable vlt.plot(ps_z_gse, ax=ax0, clim=(-5, 5)) vlt.plot(ps_z_gse_subset, ax=ax1, clim=(-5, 5)) vlt.auto_adjust_subplots() vlt.show() # make a 3d plot of the plasma sheet surface to verify that it # makes sense if True: # pylint: disable=using-constant-test from viscid.plot import vlab fig = vlab.figure(size=(1280, 800), bgcolor=(1, 1, 1), fgcolor=(0, 0, 0)) vlab.clf() # plot the plasma sheet coloured by vx # Note: points closer to x = 0 are unsightly since the plasma # sheet criteria starts to fall apart on the flanks, so # just remove the first few rows ps_z_gse_tail = ps_z_gse['x=:-2.25j'] ps_mesh_shape = [3, ps_z_gse_tail.shape[0], ps_z_gse_tail.shape[1]] ps_pts = ps_z_gse_tail.get_points().reshape(ps_mesh_shape) ps_pts[2, :, :] = ps_z_gse_tail[:, :, 0] plasma_sheet = viscid.RectilinearMeshPoints(ps_pts) ps_vx = viscid.interp_trilin(grid['vx'][gse_slice], plasma_sheet) _ = vlab.mesh_from_seeds(plasma_sheet, scalars=ps_vx) vx_clim = (-1400, 1400) vx_cmap = 'viridis' vlab.colorbar(title='Vx', clim=vx_clim, cmap=vx_cmap, nb_labels=5) # plot satelite locations as dots colored by Vx with the same # limits and color as the plasma sheet mesh sat3d = vlab.points3d(sat_loc_gse[0], sat_loc_gse[1], sat_loc_gse[2], vx_ts[itime].data.reshape(-1), scale_mode='none', scale_factor=0.2) vlab.apply_cmap(sat3d, clim=vx_clim, cmap=vx_cmap) # plot Earth for reference cotr = viscid.Cotr(dip_tilt=0.0) # pylint: disable=not-callable vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system='mhd') vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system='gse') vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-9, 3, -1]) vlab.savefig('plasma_sheet_3d_{0:02d}.png'.format(itime)) vlab.show() try: vlab.mlab.close(fig) except TypeError: pass # this happens if the figure is already closed # now do what we will with the time series... this is not a good # presentation of this data, but you get the idea from viscid.plot import vpyplot as vlt fig, axes = vlt.subplots(4, 4, figsize=(12, 12)) for ax_row, yloc in zip(axes, np.linspace(-5, 5, len(axes))[::-1]): for ax, xloc in zip(ax_row, np.linspace(4, 7, len(ax_row))): vlt.plot(vx_ts['x={0}j, y={1}j, z=0j'.format(xloc, yloc)], ax=ax) ax.set_ylabel('') vlt.plt.title('x = {0:g}, y = {1:g}'.format(xloc, yloc)) vlt.plt.suptitle('Vx [km/s]') vlt.auto_adjust_subplots() vlt.show() return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--interact", "-i", action="store_true") args = vutil.common_argparse(parser) f3d = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[0].xdmf')) f_iono = viscid.load_file( os.path.join(sample_dir, "sample_xdmf.iof.[0].xdmf")) b = f3d["b"] v = f3d["v"] pp = f3d["pp"] e = f3d["e_cc"] vlab.mlab.options.offscreen = not args.show vlab.figure(size=(1280, 800)) ########################################################## # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re cotr = viscid.Cotr(time='1990-03-21T14:48', dip_tilt=0.0) # pylint: disable=not-callable moment = cotr.get_dipole_moment(crd_system=b) isphere_mask = viscid.make_spherical_mask(b, rmax=3.1) viscid.fill_dipole(b, m=moment, mask=isphere_mask) e_mask = viscid.make_spherical_mask(b, rmax=4.0) viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e) ###################################### # plot a scalar cut plane of pressure pp_src = vlab.field2source(pp, center='node') scp = vlab.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5, transparent=True, view_controls=False, cmap="inferno", logscale=True) scp.implicit_plane.normal = [0, 0, -1] scp.implicit_plane.origin = [0, 0, 0] scp.enable_contours = True scp.contour.filled_contours = True scp.contour.number_of_contours = 64 cbar = vlab.colorbar(scp, title=pp.name, orientation='vertical') cbar.scalar_bar_representation.position = (0.01, 0.13) cbar.scalar_bar_representation.position2 = (0.08, 0.76) ###################################### # plot a vector cut plane of the flow vcp = vlab.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes', view_controls=False, mode='arrow', cmap='Greens_r') vcp.implicit_plane.normal = [0, 0, -1] vcp.implicit_plane.origin = [0, 0, 0] ############################## # plot very faint isosurfaces vx_src = vlab.field2source(v['x'], center='node') iso = vlab.iso_surface(vx_src, contours=[0.0], opacity=0.008, cmap='Pastel1') ############################################################## # calculate B field lines && topology in Viscid and plot them seedsA = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0, nalpha=5, nbeta=5) seedsB = viscid.SphericalPatch([0, 0, 0], [1.9, 0, -20], 30, 15, r=5.0, nalpha=1, nbeta=5) seeds = np.concatenate([seedsA, seedsB], axis=1) b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5, obound0=[-25, -20, -20], obound1=[15, 20, 20], wrap=True) vlab.plot_lines(b_lines, scalars=viscid.topology2color(topo)) ###################################################################### # plot a random circle at geosynchronus orbit with scalars colored # by the Matplotlib viridis color map, just because we can; this is # a useful toy for debugging circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True) scalar = np.sin(circle.as_local_coordinates().get_crd('phi')) surf = vlab.plot_line(circle.get_points(), scalars=scalar, clim=0.8, cmap="Spectral_r") ###################################################################### # Use Mayavi (VTK) to calculate field lines using an interactive seed # These field lines are colored by E parallel epar = viscid.project(e, b) epar.name = "Epar" bsl2 = vlab.streamline(b, epar, seedtype='plane', seed_resolution=4, integration_direction='both', clim=(-0.05, 0.05)) # now tweak the VTK streamlines bsl2.stream_tracer.maximum_propagation = 20. bsl2.seed.widget.origin = [-11, -5.0, -2.0] bsl2.seed.widget.point1 = [-11, 5.0, -2.0] bsl2.seed.widget.point2 = [-11.0, -5.0, 2.0] bsl2.streamline_type = 'tube' bsl2.tube_filter.radius = 0.03 bsl2.stop() # this stop/start was a hack to get something to update bsl2.start() bsl2.seed.widget.enabled = False cbar = vlab.colorbar(bsl2, title=epar.name, label_fmt='%.3f', orientation='horizontal') cbar.scalar_bar_representation.position = (0.15, 0.01) cbar.scalar_bar_representation.position2 = (0.72, 0.10) ############################################################### # Make a contour at the open-closed boundary in the ionosphere seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256, thetalim=(0, 180), philim=(0, 360), crd_system=b) _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0, nr_procs='all', output=viscid.OUTPUT_TOPOLOGY) topo_iono = np.log2(topo_iono) m = vlab.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0, clim=(0, 3), color=(0.992, 0.445, 0.0)) m.enable_contours = True m.actor.property.line_width = 4.0 m.contour.number_of_contours = 4 #################################################################### # Plot the ionosphere, note that the sample data has the ionosphere # at a different time, so the open-closed boundary found above # will not be consistant with the field aligned currents fac_tot = 1e9 * f_iono['fac_tot'] m = vlab.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300, opacity=0.75, rotate=cotr, crd_system=b) m.actor.property.backface_culling = True ######################################################################## # Add some markers for earth, i.e., real earth, and dayside / nightside # representation vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system=b) # now shade the night side with a transparent black hemisphere vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b) #################### # Finishing Touches # vlab.axes(pp_src, nb_labels=5) oa = vlab.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) # note that resize won't work if the current figure has the # off_screen_rendering flag set # vlab.resize([1200, 800]) vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0]) ############## # Save Figure # print("saving png") # vlab.savefig('mayavi_msphere_sample.png') # print("saving x3d") # # x3d files can be turned into COLLADA files with meshlab, and # # COLLADA (.dae) files can be opened in OS X's preview # # # # IMPORTANT: for some reason, using bounding_lat in vlab.plot_ionosphere # # causes a segfault when saving x3d files # # # vlab.savefig('mayavi_msphere_sample.x3d') # print("done") vlab.savefig(next_plot_fname(__file__)) ########################### # Interact Programatically if args.interact: vlab.interact() ####################### # Interact Graphically if args.show: vlab.show() try: vlab.mlab.close() except AttributeError: pass return 0