Beispiel #1
0
        def calluser():
            availableOperations = []
            tokenString = ''
            equationTokens = []
            if varName == 'Back':
                self.input = str(self.textedit.toPlainText())
                self.tokens = tokenizer(self.input)
                # print(self.tokens)
                lhs, rhs = getLHSandRHS(self.tokens)
                operations, self.solutionType = checkTypes(lhs, rhs)
                self.refreshButtons(operations)

            elif operation == 'solve':
                self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = solveFor(
                    self.lTokens, self.rTokens, varName)

            elif operation == 'integrate':
                self.lTokens, availableOperations, tokenString, equationTokens, comments = integrate(
                    self.lTokens, varName)

            elif operation == 'differentiate':
                self.lTokens, availableOperations, tokenString, equationTokens, comments = differentiate(
                    self.lTokens, varName)

            self.eqToks = equationTokens
            self.output = resultLatex(operation, equationTokens, comments,
                                      varName)
            if len(availableOperations) == 0:
                self.clearButtons()
            else:
                self.refreshButtons(availableOperations)
            if self.mode == 'normal':
                self.textedit.setText(tokenString)
            elif self.mode == 'interaction':
                cursor = self.textedit.textCursor()
                cursor.insertText(tokenString)
            if self.showStepByStep is True:
                showSteps(self)
            if self.showPlotter is True:
                plot(self)
Beispiel #2
0
        def calluser():
            availableOperations = []
            tokenString = ''
            equationTokens = []
            self.input = str(self.textedit.toPlainText())
            if varName == 'back':
                if self.input[0:4] == 'mat_':
                    self.input = self.input[4:]
                    self.input = self.input[0:-1]
                    self.input = self.input[1:]
                if ';' in self.input:
                    self.simul = True
                    if (self.input.count(';') == 2):
                        afterSplit = self.input.split(';')
                        eqStr1 = afterSplit[0]
                        eqStr2 = afterSplit[1]
                        eqStr3 = afterSplit[2]
                    elif (self.input.count(';') == 1):
                        afterSplit = self.input.split(';')
                        eqStr1 = afterSplit[0]
                        eqStr2 = afterSplit[1]
                        eqStr3 = ''
                if self.simul:
                    self.tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
                else:
                    self.tokens = tokenizer(self.input)
                    # DBP: print(self.tokens)
                    self.addEquation()
                    lhs, rhs = getLHSandRHS(self.tokens)
                    self.lTokens = lhs
                    self.rTokens = rhs
                    operations, self.solutionType = checkTypes(lhs, rhs)
                    self.refreshButtons(operations)

            else:
                if operation == 'solve':
                    if not self.simul:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = solveFor(self.lTokens, self.rTokens, varName)
                    else:
                        tokenString, equationTokens, comments = simulSolver(self.tokens[0], self.tokens[1], self.tokens[2], varName)
                elif operation == 'integrate':
                    self.lTokens, availableOperations, tokenString, equationTokens, comments = integrate(self.lTokens, varName)

                elif operation == 'differentiate':
                    self.lTokens, availableOperations, tokenString, equationTokens, comments = differentiate(self.lTokens, varName)

                self.eqToks = equationTokens
                renderQuickSol(self, tokenString, self.showQSolver)
                self.output = resultLatex(equationTokens, operation, comments, self.solutionType, self.simul, varName)

                if len(availableOperations) == 0:
                    self.clearButtons()
                else:
                    self.refreshButtons(availableOperations)
                if self.mode == 'normal':
                    self.textedit.setText(tokenString)
                elif self.mode == 'interaction':
                    cursor = self.textedit.textCursor()
                    cursor.insertText(tokenString)
                if self.showStepByStep is True:
                    showSteps(self)
                if self.showPlotter is True:
                    plot(self)
Beispiel #3
0
def commandExec(command):
    operation = command.split('(', 1)[0]
    inputEquation = command.split('(', 1)[1][:-1]
    if ',' in inputEquation:
        varName = inputEquation.split(',')[1]
        inputEquation = inputEquation.split(',')[0]

    lhs = []
    rhs = []
    solutionType = ''
    lTokens = []
    rTokens = []
    equationTokens = []
    comments = []

    tokens = tokenizer(inputEquation)
    lhs, rhs = getLHSandRHS(tokens)
    lTokens = lhs
    rTokens = rhs
    _, solutionType = checkTypes(lhs, rhs)

    if operation == 'simplify':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = simplify(tokens)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                lTokens, rTokens)
    elif operation == 'addition':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = addition(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = additionEquation(
                lTokens, rTokens, True)
    elif operation == 'subtraction':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = subtraction(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(
                lTokens, rTokens, True)
    elif operation == 'multiplication':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = multiplication(
                tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(
                lTokens, rTokens, True)
    elif operation == 'division':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = division(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(
                lTokens, rTokens, True)
    elif operation == 'simplify':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = simplify(tokens)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                lTokens, rTokens)
    elif operation == 'factorize':
        tokens, _, _, equationTokens, comments = factorize(tokens)
    elif operation == 'find-roots':
        lTokens, rTokens, _, _, equationTokens, comments = quadraticRoots(
            lTokens, rTokens)
    elif operation == 'solve':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, rTokens, _, _, equationTokens, comments = solveFor(
            lTokens, rTokens, varName)
    elif operation == 'integrate':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, _, _, equationTokens, comments = integrate(lTokens, varName)
    elif operation == 'differentiate':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, _, _, equationTokens, comments = differentiate(
            lTokens, varName)
    printOnCLI(equationTokens, operation, comments)
Beispiel #4
0
def commandExec(command):
    operation = command.split('(', 1)[0]
    inputEquation = command.split('(', 1)[1][:-1]
    matrix = False  # True when matrices operations are present in the code.
    if operation[0:4] == 'mat_':
        matrix = True

    if not matrix:
        """
        This part handles the cases when VisMa is NOT dealing with matrices.

        Boolean flags used in code below:
        simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases
        """
        varName = None
        if ',' in inputEquation:
            varName = inputEquation.split(',')[1]
            varName = "".join(varName.split())
            inputEquation = inputEquation.split(',')[0]

        simul = False  # True when simultaneous equation is present
        if (inputEquation.count(';') == 2) and (operation == 'solve'):
            simul = True
            afterSplit = inputEquation.split(';')
            eqStr1 = afterSplit[0]
            eqStr2 = afterSplit[1]
            eqStr3 = afterSplit[2]

        lhs = []
        rhs = []
        solutionType = ''
        lTokens = []
        rTokens = []
        equationTokens = []
        comments = []
        if simul:
            tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
        else:
            tokens = tokenizer(inputEquation)
            if '=' in inputEquation:
                lhs, rhs = getLHSandRHS(tokens)
                lTokens = lhs
                rTokens = rhs
                _, solutionType = checkTypes(lhs, rhs)
            else:
                solutionType = 'expression'
                lhs, rhs = getLHSandRHS(tokens)
                lTokens = lhs
                rTokens = rhs

        if operation == 'plot':
            app = QApplication(sys.argv)
            App(tokens)
            sys.exit(app.exec_())
        elif operation == 'simplify':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = simplify(tokens)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                    lTokens, rTokens)
        elif operation == 'addition':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = addition(tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = additionEquation(
                    lTokens, rTokens, True)
        elif operation == 'subtraction':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = subtraction(
                    tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(
                    lTokens, rTokens, True)
        elif operation == 'multiplication':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = multiplication(
                    tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(
                    lTokens, rTokens, True)
        elif operation == 'division':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = division(tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(
                    lTokens, rTokens, True)
        elif operation == 'factorize':
            tokens, _, _, equationTokens, comments = factorize(tokens)
        elif operation == 'find-roots':
            lTokens, rTokens, _, _, equationTokens, comments = rootFinder(
                lTokens, rTokens)
        elif operation == 'solve':
            if simul:
                if varName is not None:
                    _, equationTokens, comments = simulSolver(
                        tokens[0], tokens[1], tokens[2], varName)
                else:
                    _, equationTokens, comments = simulSolver(
                        tokens[0], tokens[1], tokens[2])
                solutionType = equationTokens
            else:
                lhs, rhs = getLHSandRHS(tokens)
                lTokens, rTokens, _, _, equationTokens, comments = solveFor(
                    lTokens, rTokens, varName)
        elif operation == 'factorial':
            tokens, _, _, equationTokens, comments = factorial(tokens)
        elif operation == 'combination':
            n = tokenizer(inputEquation)
            r = tokenizer(varName)
            tokens, _, _, equationTokens, comments = combination(n, r)
        elif operation == 'permutation':
            n = tokenizer(inputEquation)
            r = tokenizer(varName)
            tokens, _, _, equationTokens, comments = permutation(n, r)
        elif operation == 'integrate':
            lhs, rhs = getLHSandRHS(tokens)
            lTokens, _, _, equationTokens, comments = integrate(
                lTokens, varName)
        elif operation == 'differentiate':
            lhs, rhs = getLHSandRHS(tokens)
            lTokens, _, _, equationTokens, comments = differentiate(
                lTokens, varName)
        if operation != 'plot':
            # FIXME: when either plotting window or GUI window is opened from CLI and after it is closed entire CLI exits, it would be better if it is avoided
            final_string = resultStringCLI(equationTokens, operation, comments,
                                           solutionType, simul)
            print(final_string)
    else:
        """
        This part handles the cases when VisMa is dealing with matrices.

        Boolean flags used in code below:
        dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc)
        nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.)
        scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.)
        """
        operation = operation[4:]
        dualOperand = False
        nonMatrixResult = False
        scalarOperations = False
        if ', ' in inputEquation:
            dualOperand = True
            [inputEquation1, inputEquation2] = inputEquation.split(', ')
            if '[' in inputEquation1:
                inputEquation1 = inputEquation1[1:][:-1]
                inputEquation1 = inputEquation1.split('; ')
                matrixOperand1 = []
                for row in inputEquation1:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand1.append(row1)
                Matrix1 = Matrix()
                Matrix1.value = matrixOperand1
                inputEquation2 = inputEquation2[1:][:-1]
                inputEquation2 = inputEquation2.split('; ')
                matrixOperand2 = []
                for row in inputEquation2:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand2.append(row1)
                Matrix2 = Matrix()
                Matrix2.value = matrixOperand2
                Matrix1_copy = copy.deepcopy(Matrix1)
                Matrix2_copy = copy.deepcopy(Matrix2)
            else:
                scalarOperations = True
                scalar = inputEquation1
                scalarTokens = scalar
                # scalarTokens = tokenizer(scalar)
                inputEquation2 = inputEquation2[1:][:-1]
                inputEquation2 = inputEquation2.split('; ')
                matrixOperand2 = []
                for row in inputEquation2:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand2.append(row1)
                Matrix2 = Matrix()
                Matrix2.value = matrixOperand2
                scalarTokens_copy = copy.deepcopy(scalarTokens)
                Matrix2_copy = copy.deepcopy(Matrix2)

        else:
            inputEquation = inputEquation[1:][:-1]
            inputEquation = inputEquation.split('; ')

            matrixOperand = []
            for row in inputEquation:
                row1 = row.split(' ')
                for i, _ in enumerate(row1):
                    row1[i] = tokenizer(row1[i])
                matrixOperand.append(row1)

            Matrix0 = Matrix()
            Matrix0.value = matrixOperand
            Matrix0_copy = copy.deepcopy(Matrix0)
        if operation == 'simplify':
            MatrixResult = simplifyMatrix(Matrix0)
        elif operation == 'add':
            MatrixResult = addMatrix(Matrix1, Matrix2)
        elif operation == 'sub':
            MatrixResult = subMatrix(Matrix1, Matrix2)
        elif operation == 'mult':
            MatrixResult = multiplyMatrix(Matrix1, Matrix2)
        elif operation == 'determinant':
            nonMatrixResult = True
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            result = sqMatrix.determinant()
        elif operation == 'trace':
            nonMatrixResult = True
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            result = sqMatrix.traceMat()
        elif operation == 'inverse':
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            MatrixResult = SquareMat()
            MatrixResult = sqMatrix.inverse()

        finalCLIstring = ''
        if dualOperand:
            if not scalarOperations:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix1_copy,
                                                    operand2=Matrix2_copy,
                                                    result=MatrixResult)
            else:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=scalarTokens_copy,
                                                    operand2=Matrix2_copy,
                                                    result=MatrixResult)
        else:
            if nonMatrixResult:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix0_copy,
                                                    nonMatrixResult=True,
                                                    result=result)
            else:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix0_copy,
                                                    result=MatrixResult)
        print(finalCLIstring)