Beispiel #1
0
 def test_regions_stat(self):
     gages_data_model = GagesModel.load_datamodel(
         self.config_data.data_path["Temp"],
         data_source_file_name='test_data_source.txt',
         stat_file_name='test_Statistics.json',
         flow_file_name='test_flow.npy',
         forcing_file_name='test_forcing.npy',
         attr_file_name='test_attr.npy',
         f_dict_file_name='test_dictFactorize.json',
         var_dict_file_name='test_dictAttribute.json',
         t_s_dict_file_name='test_dictTimeSpace.json')
     id_regions_idx, id_regions_sites_ids = ids_of_regions(gages_data_model)
     preds, obss, inds_dfs = split_results_to_regions(
         gages_data_model, self.test_epoch, id_regions_idx,
         id_regions_sites_ids)
     regions_name = [
         "allref", "cntplain", "esthgnlnd", "mxwdshld", "northest",
         "secstplain", "seplains", "wstmnts", "wstplains", "wstxeric"
     ]
     frames = []
     x_name = "regions"
     y_name = "NSE"
     for i in range(len(id_regions_idx)):
         # plot box,使用seaborn库
         keys = ["NSE"]
         inds_test = subset_of_dict(inds_dfs[i], keys)
         inds_test = inds_test[keys[0]].values
         df_dict_i = {}
         str_i = regions_name[i]
         df_dict_i[x_name] = np.full([inds_test.size], str_i)
         df_dict_i[y_name] = inds_test
         df_i = pd.DataFrame(df_dict_i)
         frames.append(df_i)
     result = pd.concat(frames)
     plot_boxs(result, x_name, y_name)
def plot_box_inds(indicators):
    """绘制观测值和预测值比较的时间序列图"""
    data = pd.DataFrame(indicators, index=[0])
    # 将数据转换为tidy data格式,首先,增加一列名称列,然后剩下的所有值重组到var_name和value_name两列中
    indict_name = "indicator"
    indicts = pd.Series(data.columns.values, name=indict_name)
    data_t = pd.DataFrame(data.values.T)
    data_t = pd.concat([indicts, data_t], axis=1)
    formatted_data = pd.melt(data_t, [indict_name])
    formatted_data = formatted_data.sort_values(by=[indict_name])
    plot_boxs(formatted_data, x_name=indict_name, y_name='value')
Beispiel #3
0
def plot_box_inds(indicators):
    """plot boxplots in one coordination"""
    data = pd.DataFrame(indicators)
    # transform data to "tidy data". Firstly add a column,then assign all other values to "var_name" and "value_name" columns
    indict_name = "indicator"
    indicts = pd.Series(data.columns.values, name=indict_name)
    data_t = pd.DataFrame(data.values.T)
    data_t = pd.concat([indicts, data_t], axis=1)
    formatted_data = pd.melt(data_t, [indict_name])
    formatted_data = formatted_data.sort_values(by=[indict_name])
    box_fig = plot_boxs(formatted_data, x_name=indict_name, y_name='value')
    return box_fig
Beispiel #4
0
    def test_3factors(self):
        data_model = self.data_model
        config_data = self.config_data
        test_epoch = self.test_epoch
        # plot three factors
        attr_lst = ["RUNAVE7100", "STOR_NOR_2009"]
        usgs_id = data_model.t_s_dict["sites_id"]
        attrs_runavg_stor = data_model.data_source.read_attr(
            usgs_id, attr_lst, is_return_dict=False)
        run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6
                                                          )  # m^3 per year
        nor_storage = attrs_runavg_stor[:, 1] * 1000  # m^3
        dors_value = nor_storage / run_avg
        dors = np.full(len(usgs_id), "dor<0.02")
        for i in range(len(usgs_id)):
            if dors_value[i] >= 0.02:
                dors[i] = "dor≥0.02"

        diversions = np.full(len(usgs_id), "no ")
        diversion_strs = ["diversion", "divert"]
        attr_lst = ["WR_REPORT_REMARKS", "SCREENING_COMMENTS"]
        data_attr = data_model.data_source.read_attr_origin(usgs_id, attr_lst)
        diversion_strs_lower = [elem.lower() for elem in diversion_strs]
        data_attr0_lower = np.array([
            elem.lower() if type(elem) == str else elem
            for elem in data_attr[0]
        ])
        data_attr1_lower = np.array([
            elem.lower() if type(elem) == str else elem
            for elem in data_attr[1]
        ])
        data_attr_lower = np.vstack((data_attr0_lower, data_attr1_lower)).T
        for i in range(len(usgs_id)):
            if is_any_elem_in_a_lst(diversion_strs_lower,
                                    data_attr_lower[i],
                                    include=True):
                diversions[i] = "yes"

        nid_dir = os.path.join(
            "/".join(config_data.data_path["DB"].split("/")[:-1]), "nid",
            "test")
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
        gage_main_dam_purpose_lst_merge = "".join(gage_main_dam_purpose_lst)
        gage_main_dam_purpose_unique = np.unique(
            list(gage_main_dam_purpose_lst_merge))
        # gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
        purpose_regions = {}
        for i in range(gage_main_dam_purpose_unique.size):
            sites_id = []
            for key, value in gage_main_dam_purpose.items():
                if gage_main_dam_purpose_unique[i] in value:
                    sites_id.append(key)
            assert (all(x < y for x, y in zip(sites_id, sites_id[1:])))
            purpose_regions[gage_main_dam_purpose_unique[i]] = sites_id
        id_regions_idx = []
        id_regions_sites_ids = []
        regions_name = []
        show_min_num = 10
        df_id_region = np.array(data_model.t_s_dict["sites_id"])
        for key, value in purpose_regions.items():
            gages_id = value
            c, ind1, ind2 = np.intersect1d(df_id_region,
                                           gages_id,
                                           return_indices=True)
            if c.size < show_min_num:
                continue
            assert (all(x < y for x, y in zip(ind1, ind1[1:])))
            assert (all(x < y for x, y in zip(c, c[1:])))
            id_regions_idx.append(ind1)
            id_regions_sites_ids.append(c)
            regions_name.append(key)
        preds, obss, inds_dfs = split_results_to_regions(
            data_model, test_epoch, id_regions_idx, id_regions_sites_ids)
        frames = []
        x_name = "purposes"
        y_name = "NSE"
        hue_name = "DOR"
        col_name = "diversion"
        for i in range(len(id_regions_idx)):
            # plot box,使用seaborn库
            keys = ["NSE"]
            inds_test = subset_of_dict(inds_dfs[i], keys)
            inds_test = inds_test[keys[0]].values
            df_dict_i = {}
            str_i = regions_name[i]
            df_dict_i[x_name] = np.full([inds_test.size], str_i)
            df_dict_i[y_name] = inds_test
            df_dict_i[hue_name] = dors[id_regions_idx[i]]
            df_dict_i[col_name] = diversions[id_regions_idx[i]]
            # df_dict_i[hue_name] = nor_storage[id_regions_idx[i]]
            df_i = pd.DataFrame(df_dict_i)
            frames.append(df_i)
        result = pd.concat(frames)
        plot_boxs(result, x_name, y_name, ylim=[0, 1.0])
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 'purpose_distribution.png'),
                    dpi=500,
                    bbox_inches="tight")
        # g = sns.catplot(x=x_name, y=y_name, hue=hue_name, col=col_name,
        #                 data=result, kind="swarm",
        #                 height=4, aspect=.7)
        sns.set(font_scale=1.5)
        fig, ax = plt.subplots()
        fig.set_size_inches(11.7, 8.27)
        g = sns.catplot(ax=ax,
                        x=x_name,
                        y=y_name,
                        hue=hue_name,
                        col=col_name,
                        data=result,
                        palette="Set1",
                        kind="box",
                        dodge=True,
                        showfliers=False)
        # g.set(ylim=(-1, 1))
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 '3factors_distribution.png'),
                    dpi=500,
                    bbox_inches="tight")
        plt.show()
Beispiel #5
0
    def test_scatter_diversion(self):
        attr_lst = ["RUNAVE7100", "STOR_NOR_2009"]
        sites_nonref = self.data_model.t_s_dict["sites_id"]
        attrs_runavg_stor = self.data_model.data_source.read_attr(
            sites_nonref, attr_lst, is_return_dict=False)
        run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6
                                                          )  # m^3 per year
        nor_storage = attrs_runavg_stor[:, 1] * 1000  # m^3
        dors = nor_storage / run_avg

        diversion_yes = True
        diversion_no = False
        source_data_diversion = GagesSource.choose_some_basins(
            self.config_data,
            self.config_data.model_dict["data"]["tRangeTrain"],
            screen_basin_area_huc4=False,
            diversion=diversion_yes)
        source_data_nodivert = GagesSource.choose_some_basins(
            self.config_data,
            self.config_data.model_dict["data"]["tRangeTrain"],
            screen_basin_area_huc4=False,
            diversion=diversion_no)
        sites_id_diversion = source_data_diversion.all_configs[
            'flow_screen_gage_id']
        sites_id_nodivert = source_data_nodivert.all_configs[
            'flow_screen_gage_id']

        divert_regions = {}
        divert_regions["diversion"] = sites_id_diversion
        divert_regions["not_diverted"] = sites_id_nodivert

        id_regions_idx = []
        id_regions_sites_ids = []
        regions_name = []
        df_id_region = np.array(self.data_model.t_s_dict["sites_id"])
        for key, value in divert_regions.items():
            gages_id = value
            c, ind1, ind2 = np.intersect1d(df_id_region,
                                           gages_id,
                                           return_indices=True)
            assert (all(x < y for x, y in zip(ind1, ind1[1:])))
            assert (all(x < y for x, y in zip(c, c[1:])))
            id_regions_idx.append(ind1)
            id_regions_sites_ids.append(c)
            regions_name.append(key)
        preds, obss, inds_dfs = split_results_to_regions(
            self.data_model, self.test_epoch, id_regions_idx,
            id_regions_sites_ids)
        frames = []
        x_name = "is_diverted"
        y_name = "NSE"
        hue_name = "DOR"
        # hue_name = "STOR"
        for i in range(len(id_regions_idx)):
            # plot box,使用seaborn库
            keys = ["NSE"]
            inds_test = subset_of_dict(inds_dfs[i], keys)
            inds_test = inds_test[keys[0]].values
            df_dict_i = {}
            str_i = regions_name[i]
            df_dict_i[x_name] = np.full([inds_test.size], str_i)
            df_dict_i[y_name] = inds_test
            df_dict_i[hue_name] = dors[id_regions_idx[i]]
            # df_dict_i[hue_name] = nor_storage[id_regions_idx[i]]
            df_i = pd.DataFrame(df_dict_i)
            frames.append(df_i)
        result = pd.concat(frames)
        # can remove high hue value to keep a good map
        plot_boxs(result, x_name, y_name, ylim=[-1.0, 1.0])
        # plot_boxs(result, x_name, y_name, uniform_color="skyblue", swarm_plot=True, hue=hue_name, colormap=True,
        #           ylim=[-1.0, 1.0])
        cmap_str = 'viridis'
        # cmap = plt.get_cmap('Spectral')
        cbar_label = hue_name

        plt.title('Distribution of w/wo diversion')
        swarmplot_with_cbar(cmap_str,
                            cbar_label, [-1, 1.0],
                            x=x_name,
                            y=y_name,
                            hue=hue_name,
                            palette=cmap_str,
                            data=result)
Beispiel #6
0
    def test_scatter_dam_purpose(self):
        attr_lst = ["RUNAVE7100", "STOR_NOR_2009"]
        sites_nonref = self.data_model.t_s_dict["sites_id"]
        attrs_runavg_stor = self.data_model.data_source.read_attr(
            sites_nonref, attr_lst, is_return_dict=False)
        run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6
                                                          )  # m^3 per year
        nor_storage = attrs_runavg_stor[:, 1] * 1000  # m^3
        dors = nor_storage / run_avg

        nid_dir = os.path.join(self.config_data.data_path["DB"], "nid", "test")
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
        gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
        purpose_regions = {}
        for i in range(gage_main_dam_purpose_unique.size):
            sites_id = []
            for key, value in gage_main_dam_purpose.items():
                if value == gage_main_dam_purpose_unique[i]:
                    sites_id.append(key)
            assert (all(x < y for x, y in zip(sites_id, sites_id[1:])))
            purpose_regions[gage_main_dam_purpose_unique[i]] = sites_id
        id_regions_idx = []
        id_regions_sites_ids = []
        regions_name = []
        show_min_num = 10
        df_id_region = np.array(self.data_model.t_s_dict["sites_id"])
        for key, value in purpose_regions.items():
            gages_id = value
            c, ind1, ind2 = np.intersect1d(df_id_region,
                                           gages_id,
                                           return_indices=True)
            if c.size < show_min_num:
                continue
            assert (all(x < y for x, y in zip(ind1, ind1[1:])))
            assert (all(x < y for x, y in zip(c, c[1:])))
            id_regions_idx.append(ind1)
            id_regions_sites_ids.append(c)
            regions_name.append(key)
        preds, obss, inds_dfs = split_results_to_regions(
            self.data_model, self.test_epoch, id_regions_idx,
            id_regions_sites_ids)
        frames = []
        x_name = "purposes"
        y_name = "NSE"
        hue_name = "DOR"
        # hue_name = "STOR"
        for i in range(len(id_regions_idx)):
            # plot box,使用seaborn库
            keys = ["NSE"]
            inds_test = subset_of_dict(inds_dfs[i], keys)
            inds_test = inds_test[keys[0]].values
            df_dict_i = {}
            str_i = regions_name[i]
            df_dict_i[x_name] = np.full([inds_test.size], str_i)
            df_dict_i[y_name] = inds_test
            df_dict_i[hue_name] = dors[id_regions_idx[i]]
            # df_dict_i[hue_name] = nor_storage[id_regions_idx[i]]
            df_i = pd.DataFrame(df_dict_i)
            frames.append(df_i)
        result = pd.concat(frames)
        # can remove high hue value to keep a good map
        plot_boxs(result, x_name, y_name, ylim=[-1.0, 1.0])
        plt.savefig(os.path.join(self.config_data.data_path["Out"],
                                 'purpose_distribution_test.png'),
                    dpi=500,
                    bbox_inches="tight")
        plt.show()
        # plot_boxs(result, x_name, y_name, uniform_color="skyblue", swarm_plot=True, hue=hue_name, colormap=True,
        #           ylim=[-1.0, 1.0])
        cmap_str = 'viridis'
        # cmap = plt.get_cmap('Spectral')
        cbar_label = hue_name

        plt.title('Distribution of different purposes')
        swarmplot_with_cbar(cmap_str,
                            cbar_label, [-1, 1.0],
                            x=x_name,
                            y=y_name,
                            hue=hue_name,
                            palette=cmap_str,
                            data=result)
Beispiel #7
0
    def test_gages_nse_dam_attr(self):
        figure_dpi = 600
        config_data = self.config_data
        data_dir = config_data.data_path["Temp"]
        data_model = GagesModel.load_datamodel(
            data_dir,
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        gages_id = data_model.t_s_dict["sites_id"]

        exp_lst = [
            "basic_exp37", "basic_exp39", "basic_exp40", "basic_exp41",
            "basic_exp42", "basic_exp43"
        ]
        self.inds_df, pred_mean, obs_mean = load_ensemble_result(
            config_data.config_file,
            exp_lst,
            config_data.config_file.TEST_EPOCH,
            return_value=True)
        show_ind_key = 'NSE'

        plt.rcParams['font.family'] = 'serif'
        plt.rcParams['font.serif'] = ['Times New Roman'
                                      ] + plt.rcParams['font.serif']
        # plot NSE-DOR
        attr_lst = ["RUNAVE7100", "STOR_NOR_2009"]
        attrs_runavg_stor = data_model.data_source.read_attr(
            gages_id, attr_lst, is_return_dict=False)
        run_avg = attrs_runavg_stor[:, 0] * (10**(-3)) * (10**6
                                                          )  # m^3 per year
        nor_storage = attrs_runavg_stor[:, 1] * 1000  # m^3
        dors = nor_storage / run_avg
        # dor = 0 is not totally same with dam_num=0 (some dammed basins' dor is about 0.00),
        # here for zero-dor we mainly rely on dam_num = 0
        attr_dam_num = ["NDAMS_2009"]
        attrs_dam_num = data_model.data_source.read_attr(gages_id,
                                                         attr_dam_num,
                                                         is_return_dict=False)
        df = pd.DataFrame({
            "DOR": dors,
            "DAM_NUM": attrs_dam_num[:, 0],
            show_ind_key: self.inds_df[show_ind_key].values
        })
        hydro_logger.info("statistics of dors:\n %s", df.describe())
        hydro_logger.info("percentiles of dors:\n %s", df.quantile(q=0.95))
        hydro_logger.info("ecdf of dors:\n %s", ecdf(dors))

        # boxplot
        # add a column to represent the dor range for the df
        dor_value_range_lst = [[0, 0], [0, 0.02], [0.02, 0.05], [0.05, 0.1],
                               [0.1, 0.2], [0.2, 0.4], [0.4, 0.8],
                               [0.8, 10000]]
        dor_range_lst = ["0"] + [
            str(dor_value_range_lst[i][0]) + "-" +
            str(dor_value_range_lst[i][1])
            for i in range(1,
                           len(dor_value_range_lst) - 1)
        ] + [">" + str(dor_value_range_lst[-1][0])]

        # add a column to represent the dam_num range for the df
        dam_num_value_range_lst = [[0, 0], [0, 1], [1, 3], [3, 5], [5, 10],
                                   [10, 20], [20, 50], [50, 10000]]
        dam_num_range_lst = ["0", "1"] + [
            str(dam_num_value_range_lst[i][0]) + "-" +
            str(dam_num_value_range_lst[i][1])
            for i in range(2,
                           len(dam_num_value_range_lst) - 1)
        ] + [">" + str(dam_num_value_range_lst[-1][0])]

        def in_which_range(value_temp):
            if value_temp == 0:
                return "0"
            the_range = [
                a_range for a_range in dor_value_range_lst
                if a_range[0] < value_temp <= a_range[1]
            ]
            if the_range[0][0] == dor_value_range_lst[-1][0]:
                the_range_str = ">" + str(the_range[0][0])
            else:
                the_range_str = str(the_range[0][0]) + "-" + str(
                    the_range[0][1])
            return the_range_str

        def in_which_dam_num_range(value_tmp):
            if value_tmp == 0:
                return "0"
            if value_tmp == 1:
                return "1"
            the_ran = [
                a_ran for a_ran in dam_num_value_range_lst
                if a_ran[0] < value_tmp <= a_ran[1]
            ]
            if the_ran[0][0] == dam_num_value_range_lst[-1][0]:
                the_ran_str = ">" + str(the_ran[0][0])
            else:
                the_ran_str = str(the_ran[0][0]) + "-" + str(the_ran[0][1])
            return the_ran_str

        df["DOR_RANGE"] = df["DOR"].apply(in_which_range)
        df["DAM_NUM_RANGE"] = df["DAM_NUM"].apply(in_which_dam_num_range)
        df.loc[(df["DAM_NUM"] > 0) & (df["DOR_RANGE"] == "0"),
               "DOR_RANGE"] = dor_range_lst[1]
        shown_nse_range_boxplots = [-0.5, 1.0]
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        plot_boxs(df,
                  "DOR_RANGE",
                  show_ind_key,
                  ylim=shown_nse_range_boxplots,
                  order=dor_range_lst)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR-boxplots-' + str(shown_nse_range_boxplots) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")
        plt.figure()
        shown_nse_range_boxplots = [0, 1.0]
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        plot_boxs(df,
                  "DAM_NUM_RANGE",
                  show_ind_key,
                  ylim=shown_nse_range_boxplots,
                  order=dam_num_range_lst)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DAM_NUM-boxplots-' + str(shown_nse_range_boxplots) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")
        nums_in_dor_range = [
            df[df["DOR_RANGE"] == a_range_rmp].shape[0]
            for a_range_rmp in dor_range_lst
        ]
        ratios_in_dor_range = [
            a_num / df.shape[0] for a_num in nums_in_dor_range
        ]
        hydro_logger.info(
            "the number and ratio of basins in each dor range\n: %s \n %s",
            nums_in_dor_range, ratios_in_dor_range)

        nums_in_dam_num_range = [
            df[df["DAM_NUM_RANGE"] == a_range_rmp].shape[0]
            for a_range_rmp in dam_num_range_lst
        ]
        ratios_in_dam_num_range = [
            a_num / df.shape[0] for a_num in nums_in_dam_num_range
        ]
        hydro_logger.info(
            "the number and ratio of basins in each dam_num range\n: %s \n %s",
            nums_in_dam_num_range, ratios_in_dam_num_range)

        # regplot
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        sr = sns.regplot(x="DOR",
                         y=show_ind_key,
                         data=df[df[show_ind_key] >= 0],
                         scatter_kws={'s': 10})
        show_dor_max = df.quantile(
            q=0.95)["DOR"]  # 30  # max(dors)  # 0.8  # 10
        show_dor_min = min(dors)
        plt.ylim(0, 1)
        plt.xlim(show_dor_min, show_dor_max)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR-shown-max-' + str(show_dor_max) + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        # jointplot
        # dor_range = [0.2, 0.9]
        dor_range = [0.002, 0.2]
        # plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="reg",
        #                   marginal_kws=dict(bins=25))
        # g = sns.jointplot(x="DOR", y=show_ind_key, data=df[(df["DOR"] < 1) & (df[show_ind_key] >= 0)], kind="hex",
        #                   color="b", marginal_kws=dict(bins=50))
        g = sns.jointplot(
            x="DOR",
            y=show_ind_key,
            data=df[(df["DOR"] < dor_range[1]) & (df["DOR"] > dor_range[0]) &
                    (df[show_ind_key] >= 0)],
            kind="hex",
            color="b")
        g.ax_marg_x.set_xlim(dor_range[0], dor_range[1])
        # g.ax_marg_y.set_ylim(-0.5, 1)
        plt.savefig(os.path.join(
            config_data.data_path["Out"],
            'NSE~DOR(range-)' + str(dor_range) + '-jointplot.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        nid_dir = os.path.join(
            "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
            "test")
        nid_input = NidModel.load_nidmodel(
            nid_dir,
            nid_source_file_name='nid_source.txt',
            nid_data_file_name='nid_data.shp')
        gage_main_dam_purpose = unserialize_json(
            os.path.join(nid_dir, "dam_main_purpose_dict.json"))
        data_input = GagesDamDataModel(data_model, nid_input,
                                       gage_main_dam_purpose)
        dam_coords = unserialize_json_ordered(
            os.path.join(nid_dir, "dam_points_dict.json"))
        dam_storages = unserialize_json_ordered(
            os.path.join(nid_dir, "dam_storages_dict.json"))
        dam_ids_1 = list(gage_main_dam_purpose.keys())
        dam_ids_2 = list(dam_coords.keys())
        dam_ids_3 = list(dam_storages.keys())
        assert (all(x < y for x, y in zip(dam_ids_1, dam_ids_1[1:])))
        assert (all(x < y for x, y in zip(dam_ids_2, dam_ids_2[1:])))
        assert (all(x < y for x, y in zip(dam_ids_3, dam_ids_3[1:])))

        sites = list(dam_coords.keys())
        c, ind1, idx_lst_nse_range = np.intersect1d(sites,
                                                    gages_id,
                                                    return_indices=True)

        std_storage_in_a_basin = list(map(np.std, dam_storages.values()))
        log_std_storage_in_a_basin = list(
            map(np.log,
                np.array(std_storage_in_a_basin) + 1))
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            "DAM_STORAGE_STD": log_std_storage_in_a_basin,
            show_ind_key: nse_values
        })
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.regplot(x="DAM_STORAGE_STD",
                        y=show_ind_key,
                        data=df[df[show_ind_key] >= 0],
                        scatter_kws={'s': 10})
        show_max = max(log_std_storage_in_a_basin)
        show_min = min(log_std_storage_in_a_basin)
        if show_min < 0:
            show_min = 0
        # g.ax_marg_x.set_xlim(show_min, show_max)
        # g.ax_marg_y.set_ylim(0, 1)
        plt.ylim(0, 1)
        plt.xlim(show_min, show_max)
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 'NSE~' + "DAM_STORAGE_STD" + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        gages_loc_lat = data_model.data_source.gage_dict["LAT_GAGE"]
        gages_loc_lon = data_model.data_source.gage_dict["LNG_GAGE"]
        gages_loc = [[gages_loc_lat[i], gages_loc_lon[i]]
                     for i in range(len(gages_id))]
        # calculate index of dispersion, then plot the NSE-dispersion scatterplot
        # Geo coord system of gages_loc and dam_coords are both NAD83
        coefficient_of_var = list(
            map(coefficient_of_variation, gages_loc, dam_coords.values()))
        coefficient_of_var_min = min(coefficient_of_var)
        coefficient_of_var_max = max(coefficient_of_var)
        dispersion_var = "DAM_GAGE_DIS_VAR"
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            dispersion_var: coefficient_of_var,
            show_ind_key: nse_values
        })
        plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.regplot(x=dispersion_var,
                        y=show_ind_key,
                        data=df[df[show_ind_key] >= 0],
                        scatter_kws={'s': 10})
        show_max = coefficient_of_var_max
        show_min = coefficient_of_var_min
        if show_min < 0:
            show_min = 0
        # g.ax_marg_x.set_xlim(show_min, show_max)
        # g.ax_marg_y.set_ylim(0, 1)
        plt.ylim(0, 1)
        plt.xlim(show_min, show_max)
        plt.savefig(os.path.join(config_data.data_path["Out"],
                                 'NSE~' + dispersion_var + '.png'),
                    dpi=figure_dpi,
                    bbox_inches="tight")

        idx_dispersions = list(
            map(ind_of_dispersion, gages_loc, dam_coords.values()))
        idx_dispersion_min = min(idx_dispersions)
        idx_dispersion_max = max(idx_dispersions)
        dispersion_var = "DAM_DISPERSION_BASIN"
        # nse_range = [0, 1]
        # idx_lst_nse_range = inds_df_now[(inds_df_now[show_ind_key] >= nse_range[0]) & (inds_df_now[show_ind_key] < nse_range[1])].index.tolist()
        nse_values = self.inds_df["NSE"].values[idx_lst_nse_range]
        df = pd.DataFrame({
            dispersion_var: idx_dispersions,
            show_ind_key: nse_values
        })
        # g = sns.regplot(x=dispersion_var, y=show_ind_key, data=df[df[show_ind_key] >= 0], scatter_kws={'s': 10})
        if idx_dispersion_min < 0:
            idx_dispersion_min = 0
        plt.ylim(0, 1)
        plt.xlim(idx_dispersion_min, idx_dispersion_max)
        # plt.figure()
        sns.set(font="serif", font_scale=1.5, color_codes=True)
        g = sns.jointplot(x=dispersion_var,
                          y=show_ind_key,
                          data=df[df[show_ind_key] >= 0],
                          kind="reg")
        g.ax_marg_x.set_xlim(idx_dispersion_min, idx_dispersion_max)
        g.ax_marg_y.set_ylim(0, 1)
        plt.show()
Beispiel #8
0
     # plot box with seaborn
     keys = ["NSE"]
     inds_test = subset_of_dict(inds_dfs[i], keys)
     inds_test = inds_test[keys[0]].values
     df_dict_i = {}
     str_i = regions_name[i]
     df_dict_i[x_name] = np.full([inds_test.size], str_i)
     df_dict_i[y_name] = inds_test
     df_dict_i[hue_name] = dors[id_regions_idx[i]]
     df_dict_i[col_name] = diversions[id_regions_idx[i]]
     # df_dict_i[hue_name] = nor_storage[id_regions_idx[i]]
     df_i = pd.DataFrame(df_dict_i)
     frames.append(df_i)
 result = pd.concat(frames)
 plt.figure()
 plot_boxs(result, x_name, y_name, ylim=[-0.4, 1.0], rotation=0)
 plt.savefig(os.path.join(config_data.data_path["Out"],
                          'purpose_distribution.png'),
             dpi=FIGURE_DPI,
             bbox_inches="tight")
 # g = sns.catplot(x=x_name, y=y_name, hue=hue_name, col=col_name,
 #                 data=result, kind="swarm",
 #                 height=4, aspect=.7)
 fig, ax = plt.subplots()
 fig.set_size_inches(11.7, 8.27)
 sns.set(font="serif", font_scale=1.5, color_codes=True)
 g = sns.catplot(
     ax=ax,
     x=x_name,
     y=y_name,
     hue=hue_name,