Beispiel #1
0
 def test_plot_ts(self):
     """测试可视化代码"""
     # plot time series
     show_me_num = 5
     t_s_dict = unserialize_json(self.t_s_dict_file)
     sites = np.array(t_s_dict["sites_id"])
     t_range = np.array(t_s_dict["t_final_range"])
     plot_ts_obs_pred(self.obs, self.pred, sites, t_range, show_me_num)
Beispiel #2
0
    def test_inv_plot(self):
        data_model = GagesModel.load_datamodel(
            self.config_data_2.data_path["Temp"],
            "2",
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        flow_pred_file = os.path.join(
            data_model.data_source.data_config.data_path['Temp'],
            'epoch' + str(self.test_epoch) + 'flow_pred.npy')
        flow_obs_file = os.path.join(
            data_model.data_source.data_config.data_path['Temp'],
            'epoch' + str(self.test_epoch) + 'flow_obs.npy')
        pred = unserialize_numpy(flow_pred_file)
        obs = unserialize_numpy(flow_obs_file)
        pred = pred.reshape(pred.shape[0], pred.shape[1])
        obs = obs.reshape(obs.shape[0], obs.shape[1])
        inds = statError(obs, pred)
        inds['STAID'] = data_model.t_s_dict["sites_id"]
        inds_df = pd.DataFrame(inds)
        inds_df.to_csv(
            os.path.join(self.config_data_2.data_path["Out"], 'data_df.csv'))
        # plot box,使用seaborn库
        keys = ["Bias", "RMSE", "NSE"]
        inds_test = subset_of_dict(inds, keys)
        box_fig = plot_diff_boxes(inds_test)
        box_fig.savefig(
            os.path.join(self.config_data_2.data_path["Out"], "box_fig.png"))
        # plot ts
        show_me_num = 5
        t_s_dict = data_model.t_s_dict
        sites = np.array(t_s_dict["sites_id"])
        t_range = np.array(t_s_dict["t_final_range"])
        time_seq_length = self.config_data_1.model_dict['model']['seqLength']
        time_start = np.datetime64(t_range[0]) + np.timedelta64(
            time_seq_length - 1, 'D')
        t_range[0] = np.datetime_as_string(time_start, unit='D')
        ts_fig = plot_ts_obs_pred(obs, pred, sites, t_range, show_me_num)
        ts_fig.savefig(
            os.path.join(self.config_data_2.data_path["Out"], "ts_fig.png"))

        # plot nse ecdf
        sites_df_nse = pd.DataFrame({
            "sites": sites,
            keys[2]: inds_test[keys[2]]
        })
        plot_ecdf(sites_df_nse, keys[2])
        # plot map
        gauge_dict = data_model.data_source.gage_dict
        plot_map(gauge_dict,
                 sites_df_nse,
                 id_col="STAID",
                 lon_col="LNG_GAGE",
                 lat_col="LAT_GAGE")
Beispiel #3
0
    def test_forecast_test(self):
        sim_df = GagesModel.load_datamodel(
            self.sim_config_data.data_path["Temp"],
            "1",
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')
        df = GagesModel.load_datamodel(
            self.config_data.data_path["Temp"],
            "2",
            data_source_file_name='test_data_source.txt',
            stat_file_name='test_Statistics.json',
            flow_file_name='test_flow.npy',
            forcing_file_name='test_forcing.npy',
            attr_file_name='test_attr.npy',
            f_dict_file_name='test_dictFactorize.json',
            var_dict_file_name='test_dictAttribute.json',
            t_s_dict_file_name='test_dictTimeSpace.json')

        data_input = GagesForecastDataModel(sim_df, df)
        pred, obs = test_lstm_forecast(data_input)

        pred = pred.reshape(pred.shape[0], pred.shape[1])
        obs = obs.reshape(obs.shape[0], obs.shape[1])

        inds = statError(obs, pred)
        show_me_num = 5
        t_s_dict = data_input.model_data.t_s_dict
        sites = np.array(t_s_dict["sites_id"])
        t_range = np.array(t_s_dict["t_final_range"])
        time_seq_length = data_input.model_data.data_source.data_config.model_dict[
            'model']['seqLength']
        time_start = np.datetime64(t_range[0]) + np.timedelta64(
            time_seq_length, 'D')
        t_range[0] = np.datetime_as_string(time_start, unit='D')
        ts_fig = plot_ts_obs_pred(obs, pred, sites, t_range, show_me_num)
        ts_fig.savefig(
            os.path.join(self.config_data.data_path["Out"], "ts_fig.png"))
        # # plot box,使用seaborn库
        keys = ["Bias", "RMSE", "NSE"]
        inds_test = subset_of_dict(inds, keys)
        box_fig = plot_diff_boxes(inds_test)
        box_fig.savefig(
            os.path.join(self.config_data.data_path["Out"], "box_fig.png"))
        # plot map
        sites_df = pd.DataFrame({"sites": sites, keys[2]: inds_test[keys[2]]})
        plot_ind_map(df.data_source.all_configs['gage_point_file'], sites_df)
Beispiel #4
0
 def test_explore_test(self):
     models_num = 0
     dirs = os.listdir(self.config_data.data_path["Temp"])
     for dir_temp in dirs:
         if os.path.isdir(
                 os.path.join(self.config_data.data_path["Temp"],
                              dir_temp)):
             models_num += 1
     for count in range(models_num):
         print("\n", "testing model", str(count + 1), ":\n")
         data_model = GagesModel.load_datamodel(
             self.config_data.data_path["Temp"],
             str(count),
             data_source_file_name='test_data_source.txt',
             stat_file_name='test_Statistics.json',
             flow_file_name='test_flow.npy',
             forcing_file_name='test_forcing.npy',
             attr_file_name='test_attr.npy',
             f_dict_file_name='test_dictFactorize.json',
             var_dict_file_name='test_dictAttribute.json',
             t_s_dict_file_name='test_dictTimeSpace.json')
         pred, obs = master_test(data_model)
         pred = pred.reshape(pred.shape[0], pred.shape[1])
         obs = obs.reshape(obs.shape[0], obs.shape[1])
         inds = statError(obs, pred)
         show_me_num = 5
         t_s_dict = data_model.t_s_dict
         sites = np.array(t_s_dict["sites_id"])
         t_range = np.array(t_s_dict["t_final_range"])
         ts_fig = plot_ts_obs_pred(obs, pred, sites, t_range, show_me_num)
         ts_fig.savefig(
             os.path.join(
                 data_model.data_source.data_config.data_path["Out"],
                 "ts_fig.png"))
         # # plot box,使用seaborn库
         keys = ["Bias", "RMSE", "NSE"]
         inds_test = subset_of_dict(inds, keys)
         box_fig = plot_diff_boxes(inds_test)
         box_fig.savefig(
             os.path.join(
                 data_model.data_source.data_config.data_path["Out"],
                 "box_fig.png"))
         # plot map
         sites_df = pd.DataFrame({
             "sites": sites,
             keys[2]: inds_test[keys[2]]
         })
         plot_ind_map(data_model.data_source.all_configs['gage_point_file'],
                      sites_df)
Beispiel #5
0
 def test_purposes_seperate(self):
     quick_data_dir = os.path.join(self.config_data.data_path["DB"],
                                   "quickdata")
     data_dir = os.path.join(quick_data_dir,
                             "allnonref-dam_95-05_nan-0.1_00-1.0")
     data_model_test = GagesModel.load_datamodel(
         data_dir,
         data_source_file_name='test_data_source.txt',
         stat_file_name='test_Statistics.json',
         flow_file_name='test_flow.npy',
         forcing_file_name='test_forcing.npy',
         attr_file_name='test_attr.npy',
         f_dict_file_name='test_dictFactorize.json',
         var_dict_file_name='test_dictAttribute.json',
         t_s_dict_file_name='test_dictTimeSpace.json')
     data_model = GagesModel.update_data_model(self.config_data,
                                               data_model_test)
     nid_dir = os.path.join(
         "/".join(self.config_data.data_path["DB"].split("/")[:-1]), "nid",
         "quickdata")
     gage_main_dam_purpose = unserialize_json(
         os.path.join(nid_dir, "dam_main_purpose_dict.json"))
     gage_main_dam_purpose_lst = list(gage_main_dam_purpose.values())
     gage_main_dam_purpose_unique = np.unique(gage_main_dam_purpose_lst)
     purpose_regions = {}
     for i in range(gage_main_dam_purpose_unique.size):
         sites_id = []
         for key, value in gage_main_dam_purpose.items():
             if value == gage_main_dam_purpose_unique[i]:
                 sites_id.append(key)
         assert (all(x < y for x, y in zip(sites_id, sites_id[1:])))
         purpose_regions[gage_main_dam_purpose_unique[i]] = sites_id
     id_regions_idx = []
     id_regions_sites_ids = []
     df_id_region = np.array(data_model.t_s_dict["sites_id"])
     for key, value in purpose_regions.items():
         gages_id = value
         c, ind1, ind2 = np.intersect1d(df_id_region,
                                        gages_id,
                                        return_indices=True)
         assert (all(x < y for x, y in zip(ind1, ind1[1:])))
         assert (all(x < y for x, y in zip(c, c[1:])))
         id_regions_idx.append(ind1)
         id_regions_sites_ids.append(c)
     pred_all, obs_all = load_result(self.config_data.data_path["Temp"],
                                     self.test_epoch)
     pred_all = pred_all.reshape(pred_all.shape[0], pred_all.shape[1])
     obs_all = obs_all.reshape(obs_all.shape[0], obs_all.shape[1])
     for i in range(9, len(gage_main_dam_purpose_unique)):
         pred = pred_all[id_regions_idx[i], :]
         obs = obs_all[id_regions_idx[i], :]
         inds = statError(obs, pred)
         inds['STAID'] = id_regions_sites_ids[i]
         inds_df = pd.DataFrame(inds)
         inds_df.to_csv(
             os.path.join(
                 self.config_data.data_path["Out"],
                 gage_main_dam_purpose_unique[i] + "epoch" +
                 str(self.test_epoch) + 'data_df.csv'))
         # plot box,使用seaborn库
         keys = ["Bias", "RMSE", "NSE"]
         inds_test = subset_of_dict(inds, keys)
         box_fig = plot_diff_boxes(inds_test)
         box_fig.savefig(
             os.path.join(
                 self.config_data.data_path["Out"],
                 gage_main_dam_purpose_unique[i] + "epoch" +
                 str(self.test_epoch) + "box_fig.png"))
         # plot ts
         sites = np.array(df_id_region[id_regions_idx[i]])
         t_range = np.array(data_model.t_s_dict["t_final_range"])
         show_me_num = 1
         ts_fig = plot_ts_obs_pred(obs, pred, sites, t_range, show_me_num)
         ts_fig.savefig(
             os.path.join(
                 self.config_data.data_path["Out"],
                 gage_main_dam_purpose_unique[i] + "epoch" +
                 str(self.test_epoch) + "ts_fig.png"))
         # plot nse ecdf
         sites_df_nse = pd.DataFrame({
             "sites": sites,
             keys[2]: inds_test[keys[2]]
         })
         plot_ecdf(
             sites_df_nse, keys[2],
             os.path.join(
                 self.config_data.data_path["Out"],
                 gage_main_dam_purpose_unique[i] + "epoch" +
                 str(self.test_epoch) + "ecdf_fig.png"))
         # plot map
         gauge_dict = data_model.data_source.gage_dict
         save_map_file = os.path.join(
             self.config_data.data_path["Out"],
             gage_main_dam_purpose_unique[i] + "epoch" +
             str(self.test_epoch) + "map_fig.png")
         plot_map(gauge_dict,
                  sites_df_nse,
                  save_file=save_map_file,
                  id_col="STAID",
                  lon_col="LNG_GAGE",
                  lat_col="LAT_GAGE")