Beispiel #1
0
var.to_csv(path+'/test_rmse.csv',index = False,header = False)
#var = pd.DataFrame(alpha1)
#var.to_csv(path+'/alpha.csv',index = False, header = False)

#print('min_rmse:%r'%(np.min(test_rmse)),
#      'min_mae:%r'%(np.min(test_mae)),
#      'max_acc:%r'%(np.max(test_acc)))

index = test_rmse.index(np.min(test_rmse))
#test_mae.index(np.min(test_mae))
#test_acc.index(np.max(test_acc))
test_result = test_pred[index]
var = pd.DataFrame(test_result)
var.to_csv(path+'/test_result.csv',index = False,header = False)
plot_result(test_result,test_label1,path)
plot_error(train_rmse,train_loss,test_rmse,test_acc,test_mae,path)

fig1 = plt.figure(figsize=(7,3))
ax1 = fig1.add_subplot(1,1,1)
plt.plot(np.sum(alpha1,0))
plt.savefig(path+'/alpha.jpg',dpi=500)
plt.show()


plt.imshow(np.mat(np.sum(alpha1,0)))
plt.savefig(path+'/alpha11.jpg',dpi=500)
plt.show()

print('min_rmse:%r'%(np.min(test_rmse)),
      'min_mae:%r'%(test_mae[index]),
      'max_acc:%r'%(test_acc[index]),
Beispiel #2
0
            validation_label = target_cpu * max_value
            validation_pred.append(pred_cpu * max_value)

            # mae = np.mean(np.absolute(pred_unnormalized - target_unnormalized))
            # validation_maes.append(mae)

            out = None
            val_input = val_input.to(device="cpu")
            val_target = val_target.to(device="cpu")
        print('epoch' + str(epoch))
        print("Training loss: {}".format(training_losses[-1]))
        print("Training rmse: {}".format(training_rmses[-1]))
        print("Validation loss: {}".format(validation_losses[-1]))
        print("Validation rmse: {}".format(validation_rmse[-1]))
        print("Validation acc: {}".format(validation_acc[-1]))
        if (epoch % 1000 == 0):
            torch.save(net, './torchimage/model_epoch' + str(epoch) + '.pkl')

    index = validation_rmse.index(
        np.min(validation_rmse))  # 找出testrmse中最小的那个epoch
    test_result = validation_pred[index]
    var = pd.DataFrame(test_result)
    var.to_csv('./torchimage' + '/test_result_epoch' + str(index) + '.csv',
               index=False,
               header=False)
    print(validation_label.shape)
    print(test_result.shape)
    plot_result_3ave(test_result, validation_label,
                     './torchimage/')  # shape为[testbatch*prelen, num_nodes]
    plot_error(training_rmses, training_losses, validation_rmse,
               validation_acc, validation_maes, './torchimage/')