Beispiel #1
0
 def ssr_curve(self,
               x,
               y,
               slopes=[
                   0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0,
                   4.0, 5.0, 7.5, 10.0
               ]):
     ssrs = []
     for slope in slopes:
         yint = (np.mean(y) - slope * np.mean(x))
         ssrs.append(
             self.get_ss_res(zip(x, y), lambda val: slope * val + yint))
     image_manager = ImageManager()
     plotter = Plotter()
     plotter.set_title('Sum of Squared Residuals')
     plotter.set_axis_labels('Slope Selected', 'Sum of Squared Residual')
     plotter.set_output_filename(g.files['ls-ssr'])
     ssr_plot = ScatterSketch()
     ssr_plot.add_x(slopes)
     ssr_plot.add_y(ssrs)
     plotter.load(ssr_plot)
     plotter.save()
     plotter.close()
     g.debug.prn(self, 'Drawn Sum of Squared Residuals Plot')
     image_manager.scale(g.files['ls-ssr'], g.files['ls-ssr'], 250)
Beispiel #2
0
def gen_plot():
    plotter.set_title(g.graph_titles['main'])

    g.x = g.randomizer.random_list(25, 0, 100)
    g.y = g.randomizer.random_list(25, 0, 100)

    # plotter.add_x_val(x) # [-2, -1, 0, 1, 2]
    # plotter.add_y_val(y) # [4,1,0,1,4]

    scatter = ScatterSketch()
    scatter.add_x(g.x)
    scatter.add_y(g.y)
    plotter.load(scatter)

    plotter.save()
    plotter.close()

    # g.modeller.gen_least_squares(x,y)
    # g.analyzer.f_dist(LinearModel, 100)

    image_manager.scale(g.files['plot'], g.files['plot'], g.image_height)