Beispiel #1
0
    def _initialize(self, strategy=None, start=None, end=None, timezone=None, commission=None):
        self.start = start
        self.end = end
        self.commission = commission
        self.timezone=timezone
        self.portfolio = Portfolio(strategy, start, end, commission,
                                   self.frequency, self.refresh_rate, self.trigger_time)
        self.context = self.portfolio.context

        # 最小精度
        self.context.min_order = {}
        for univ in self.universe:
            exchange = univ.split('.')[1]
            self.context.min_order[exchange] = {}
        # print(self.context.min_order)
        for univ in self.universe:
            exchange = univ.split('.')[1]
            symbol = univ.split('.')[0].lower()
            min_order_qty, min_order_amount = get_min_order(exchange, symbol)
            self.context.min_order[exchange][symbol] = {'min_order_qty':min_order_qty,
                                                             'min_order_amount':min_order_amount}


        # 记录universe所有的asset
        self.universe_assets = list()
        for univ in self.universe:
            base_asset = univ.split('.')[0].split('/')[0].lower()
            quote_asset = univ.split('.')[0].split('/')[1].lower()
            if base_asset not in self.universe_assets:
                self.universe_assets.append(base_asset)
            if quote_asset not in self.universe_assets:
                self.universe_assets.append(quote_asset)
        self.all_assets = list(set(AccountManager().asset_varieties + self.universe_assets))
        # print(self.all_assets)

        # # 初始每个账户添加除初始化之外的universe的asset
        # for name,account in self.portfolio.accounts.items():
        #     for asset in universe_assets:
        #         if asset not in account.current_position.keys():
        #             account.current_position[asset] = SpotPosition('spot', asset, 0, 0, 0, 0)

        self.total_dates = get_total_dates(self.frequency, 1, self.trigger_time, self.start, self.end)
        self.strategy_dates = get_total_dates(self.frequency, self.refresh_rate, self.trigger_time, self.start, self.end)
        if self.frequency in ['d','1d','day','1day']:
           self.day_date=get_day_dates(self.start, self.end,self.refresh_rate)
        else:
           self.day_date=get_day_dates(self.start, self.end)
        # 先输出report的dates信息,画图用
        output({"display_type": "strategy",
              "dates":self.day_date})

        try:
            self.initialize(self.context)
        except Exception:
            output({"display_type": "error",
                    "error_msg": traceback.format_exc()})
            return 1
Beispiel #2
0
        'granularity':granularity  #以秒为单位的时间间隔,1分钟取值60 1小时取值3600 一天取值86400
    }
    #一次请求获得K线长度不超过300,可以多次反复请求
    r = requests.get(url,params=payload)
    klines=json.loads(r.text)
    return klines

if __name__=='__main__':
    exchange='coinbase'
    symbol='btcusd'
    freq='1d'
    start1='2017-01-01 00:00:00'
    end1='2020-05-31 00:00:00'
    start2=datetime.strptime(start1,'%Y-%m-%d %H:%M:%S').timestamp()
    end2=datetime.strptime(end1,'%Y-%m-%d %H:%M:%S').timestamp()
    length1=get_total_dates(freq,1,0,start1,end1)
    if freq == '1d':
       interval=86400
       count=round((end2-start2)/(lenght1-1))
    if count>1:   
       for i in range(count)
           
    data1=kline_coinbase('2017-03-23T08:00:00.000Z','2017-12-23T08:00:00.000Z',86400)
    df=data1.sort_index(axis=0,by='date',ascending=True)

    years = dict()
    for i in range(len(df)):
        year = (datetime.strptime(df.iloc[i]['date'],'%Y-%m-%d %H:%M:%S')).year
        if year not in years:
            years[year] = list()
        tempdata1= (df.iloc[i][1:7].values) 
Beispiel #3
0
def get_data(exchange, symbol, frequency, start_date, end_date, timezone):
    data = get_bars(symbol,
                    exchange,
                    frequency=frequency,
                    start_date=start_date,
                    end_date=end_date,
                    timezone=timezone)
    df_data = pd.DataFrame(data)
    # total_ts = get_total_timestamps(start_date, end_date)     #只能获得天的日期
    total_ts = get_total_dates(frequency, 1, 0, start_date,
                               end_date)  #天或者分钟的日期,
    #对df_data清醒数据清洗
    if len(df_data) > 1:
        if df_data['timestamp'][0] > 0 and df_data['close'][0] > 0:
            for x in range(1, len(df_data)):
                if df_data['close'][x] == 0:
                    df_data.iloc[x, 1:6] = df_data.iloc[x - 1, 1:6]

        else:
            nonzero = df_data[df_data['close'] > 0].index.tolist()
            if len(nonzero) > 0:
                for n in range(0, nonzero[0]):
                    df_data.iloc[n, 1:6] = df_data.iloc[nonzero[0], 1:6]
                for x in range(1, len(df_data)):
                    if df_data['high'][x] == 0 and df_data['close'][x] == 0:
                        df_data.iloc[x, 1:6] = df_data.iloc[x - 1, 1:6]

    if len(df_data) == len(total_ts):
        df_data['timestamp'] = total_ts
    else:
        print('data error in cleaning, please wait')
        df_date = np.array(df_data['timestamp'], dtype='uint64')
        ts_date = []
        for i in range(0, len(total_ts)):
            temp1 = datetime.strptime(total_ts[i],
                                      '%Y-%m-%d %H:%M:%S').timestamp()
            ts_date.append(round(temp1))  #total_ts转化为时间戳形式
        ts_date = np.array(ts_date, dtype='uint64')
        temp2 = np.zeros([len(ts_date), 5])
        df_data1 = pd.DataFrame(
            temp2,
            index=range(len(ts_date)),
            columns=['open', 'high', 'low', 'close', 'volume'])
        df_data1.insert(0, 'timestamp',
                        total_ts)  #创建一个完整的dataframe,下面把df_data的值复制进去,再把没有的部分补上
        if len(df_data) < len(total_ts):
            x = len(df_data) - 1
            start1 = 0
            while x > 0:
                if df_date[x] != ts_date[x]:
                    x -= 1
                elif df_date[x] == ts_date[x]:
                    start1 = x
                    break
            if start1 > 0:
                df_data1.iloc[0:start1, 1:6] = df_data.iloc[0:start1, 1:6]
                for j in range(start1, len(ts_date)):
                    if ts_date[j] in df_date:
                        loacte1 = np.argwhere(df_date == ts_date[j])
                        df_data1.iloc[j, 1:6] = df_data.iloc[int(loacte1[0]),
                                                             1:6]
                    else:
                        if j > 0:
                            df_data1.iloc[j, 1:6] = df_data1.iloc[j - 1, 1:6]
            else:
                for j in range(0, len(ts_date)):
                    if ts_date[j] in df_date:
                        loacte1 = np.argwhere(df_date == ts_date[j])
                        df_data1.iloc[j, 1:6] = df_data.iloc[int(loacte1[0]),
                                                             1:6]
                    else:
                        if j > 0:
                            df_data1.iloc[j, 1:6] = df_data1.iloc[j - 1, 1:6]

        if len(df_data) > len(total_ts):

            for j in range(0, len(ts_date)):
                if ts_date[j] in df_date:
                    loacte1 = np.argwhere(df_date == ts_date[j])
                    df_data1.iloc[j, 1:6] = df_data.iloc[int(loacte1[0]), 1:6]
                else:
                    if j > 0:
                        df_data1.iloc[j, 1:6] = df_data1.iloc[j - 1, 1:6]
        df_data = df_data1
    return df_data