def test_observer_content_aware_subjective_model_subjreject(self):
     dataset = import_python_file(self.dataset_filepath)
     np.random.seed(0)
     info_dict = {
         'selected_subjects': range(5),
     }
     dataset_reader = CorruptSubjectRawDatasetReader(dataset, input_dict=info_dict)
     subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
     with self.assertRaises(AssertionError):
         subjective_model.run_modeling(subject_rejection=True)
Beispiel #2
0
 def test_observer_content_aware_subjective_model_subjreject(self):
     dataset = import_python_file(self.dataset_filepath)
     np.random.seed(0)
     info_dict = {
         'selected_subjects': range(5),
     }
     dataset_reader = CorruptSubjectRawDatasetReader(dataset,
                                                     input_dict=info_dict)
     subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
     with self.assertRaises(AssertionError):
         subjective_model.run_modeling(subject_rejection=True)
Beispiel #3
0
    def test_observer_content_aware_subjective_model_nosubject(self):
        subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file(
            self.dataset_filepath)
        result = subjective_model.run_modeling(mode='NO_SUBJECT')

        self.assertAlmostEquals(np.sum(result['observer_bias']), 0.0, places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']), 0.0, places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                0.0,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.0,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.0384615384616,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4012220200639218,
                                places=4)

        self.assertAlmostEquals(np.sum(result['content_bias']), 0.0, places=4)
        self.assertAlmostEquals(np.var(result['content_bias']), 0.0, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                6.06982228334157,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.0045809756997836721,
                                places=4)
Beispiel #4
0
    def test_observer_content_aware_subjective_model_nocontent(self):
        subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file(
            self.dataset_filepath)
        result = subjective_model.run_modeling(mode='NO_CONTENT')

        self.assertAlmostEquals(np.sum(result['observer_bias']),
                                -0.090840910829083799,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']),
                                0.089032585621095089,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                15.681766163430936,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.012565584832977776,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.31447815213642,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4355485462027884,
                                places=4)

        self.assertAlmostEquals(np.sum(result['content_bias']), 0.0, places=4)
        self.assertAlmostEquals(np.var(result['content_bias']), 0.0, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                0.0,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.0,
                                places=4)
Beispiel #5
0
    def test_observer_content_aware_subjective_model(self):
        subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file(
            self.dataset_filepath)
        result = subjective_model.run_modeling()

        self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4)
        self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                3.8972884776604402,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.0041122094732031289,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']),
                                -0.055712761348815837,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']),
                                0.085842891905121704,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                10.164665557559516,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.028749990587721687,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.20774261173619,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4351342153719635,
                                places=4)
    def test_observer_content_aware_subjective_model_missingdata(self):

        dataset = import_python_file(self.dataset_filepath)

        np.random.seed(0)
        info_dict = {
            'missing_probability': 0.1,
        }
        dataset_reader = MissingDataRawDatasetReader(dataset, input_dict=info_dict)

        subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
        result = subjective_model.run_modeling()

        self.assertAlmostEquals(np.sum(result['content_ambiguity']), 3.9104244772977128, places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.0037713583509767193, places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']), -0.21903272050455846, places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']), 0.084353684687185043, places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 9.8168943054654481, places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.028159236075789944, places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']), 280.05548186797336, places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']), 1.4339487982797514, places=4)

        np.random.seed(0)
        info_dict = {
            'missing_probability': 0.5,
        }
        dataset_reader = MissingDataRawDatasetReader(dataset, input_dict=info_dict)

        subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
        result = subjective_model.run_modeling()

        self.assertAlmostEquals(np.sum(result['content_ambiguity']), 2.63184284168883, places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.019164097909450246, places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']), 0.2263148440748638, places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']), 0.070613033112114504, places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 12.317917502439435, places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.029455722248727296, places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']), 280.29962156788139, places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']), 1.4717366222424826, places=4)
Beispiel #7
0
    def test_observer_content_aware_subjective_model_numerical(self):
        subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file(
            self.dataset_filepath)
        result = subjective_model.run_modeling(gradient_method='numerical')

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                3.8972884776604402,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.0041122094732031289,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']),
                                -0.055712761348815837,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']),
                                0.085842891905121704,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                10.164665557559516,
                                places=3)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.028749990587721687,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.20774261173619,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4351342153719635,
                                places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity_std']),
                                0.30465244947706538,
                                places=4)
        self.assertAlmostEquals(np.sum(result['observer_bias_std']),
                                1.7392847550878989,
                                places=4)
        self.assertAlmostEquals(np.sum(result['observer_inconsistency_std']),
                                12.393285044624955,
                                places=4)
        self.assertAlmostEquals(np.sum(result['quality_scores_std']),
                                8.8863877635750423,
                                places=4)
    def test_observer_content_aware_subjective_model_numerical(self):
        subjective_model = MaximumLikelihoodEstimationModel.from_dataset_file(
            self.dataset_filepath)
        result = subjective_model.run_modeling(gradient_method='numerical')

        self.assertAlmostEquals(np.sum(result['content_ambiguity']), 3.8972884776604402, places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']), 0.0041122094732031289, places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']), -0.055712761348815837, places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']), 0.085842891905121704, places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']), 10.164665557559516, places=3)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']), 0.028749990587721687, places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']), 280.20774261173619, places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']), 1.4351342153719635, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity_std']), 0.30465244947706538, places=4)
        self.assertAlmostEquals(np.sum(result['observer_bias_std']), 1.7392847550878989, places=4)
        self.assertAlmostEquals(np.sum(result['observer_inconsistency_std']), 12.393285044624955, places=4)
        self.assertAlmostEquals(np.sum(result['quality_scores_std']), 8.8863877635750423, places=4)
Beispiel #9
0
    def test_observer_content_aware_subjective_model_missingdata(self):

        dataset = import_python_file(self.dataset_filepath)

        np.random.seed(0)
        info_dict = {
            'missing_probability': 0.1,
        }
        dataset_reader = MissingDataRawDatasetReader(dataset,
                                                     input_dict=info_dict)

        subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
        result = subjective_model.run_modeling()

        self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4)
        self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                3.9104244772977128,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.0037713583509767193,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']),
                                -0.21903272050455846,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']),
                                0.084353684687185043,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                9.8168943054654481,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.028159236075789944,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.05548186797336,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4339487982797514,
                                places=4)

        np.random.seed(0)
        info_dict = {
            'missing_probability': 0.5,
        }
        dataset_reader = MissingDataRawDatasetReader(dataset,
                                                     input_dict=info_dict)

        subjective_model = MaximumLikelihoodEstimationModel(dataset_reader)
        result = subjective_model.run_modeling()

        self.assertAlmostEquals(np.sum(result['content_bias']), 0, places=4)
        self.assertAlmostEquals(np.var(result['content_bias']), 0, places=4)

        self.assertAlmostEquals(np.sum(result['content_ambiguity']),
                                2.63184284168883,
                                places=4)
        self.assertAlmostEquals(np.var(result['content_ambiguity']),
                                0.019164097909450246,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_bias']),
                                0.2263148440748638,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_bias']),
                                0.070613033112114504,
                                places=4)

        self.assertAlmostEquals(np.sum(result['observer_inconsistency']),
                                12.317917502439435,
                                places=4)
        self.assertAlmostEquals(np.var(result['observer_inconsistency']),
                                0.029455722248727296,
                                places=4)

        self.assertAlmostEquals(np.sum(result['quality_scores']),
                                280.29962156788139,
                                places=4)
        self.assertAlmostEquals(np.var(result['quality_scores']),
                                1.4717366222424826,
                                places=4)