def test_different_methods(): mean_reggresion = zeros((5,6)) pl.figure() word = "samochod" metods = ["momentum", "tnc", "bfgs", "cg", "rprop"] _words=[u"Backpropagation z momentem", u"Alg. BFGS (multicore)", u"Alg. BFGS", u"Gradient sprzezony", "Alg. RProp"] colors= ["#FF2800".lower(), "#FFB800".lower(), "#1729B0".lower(), "#007929".lower(), "#60016D"] w = 3 p_names = ["Slope", "Intercept", "R-value", "P-value", "Slope Error", "Estimation Error"] for n, met in zip(range(5), metods): fn = "{}_network_{}.net".format(met, voice_sample.timestamp() ) (network, samples) = learn_net(fn, word, rs=1, re=5, save=False, method=met) (inp, target) = get_inputs_and_outputs(samples, word, 6,10,False) (output, reggresion) = network.test(inp, target, iprint=0) mean_reggresion[n,:] = np.mean(reggresion,0) x = np.arange(6)*7 + n pl.bar(x, mean_reggresion[n,:], color=colors[n], width=0.9, label=_words[n]) print mean_reggresion pl.xticks( np.arange(6)*7+2, p_names ) pl.xlim( -1, 44 ) pl.legend() pl.show() pass
def test_and_plot(): mean_reggresion = zeros((4, 6)) pl.figure() _words = [u"Imie", u"Nazwisko", u"Samochód", u"Kot"] colors = [ "#FF2800".lower(), "#FFB800".lower(), "#1729B0".lower(), "#007929".lower() ] w = 3 p_names = [ "Slope", "Intercept", "R-value", "P-value", "Slope Error", "Estimation Error" ] for n, word in zip(range(4), voice_sample.WORDS): fn = "{}_network_{}.net".format(word, voice_sample.timestamp()) (network, samples) = learn_net(fn, word, rs=1, re=5, save=False) (inp, target) = get_inputs_and_outputs(samples, word, 6, 10, False) (output, reggresion) = network.test(inp, target, iprint=0) mean_reggresion[n, :] = np.mean(reggresion, 0) x = np.arange(6) * 6 + n pl.bar(x, mean_reggresion[n, :], color=colors[n], width=0.9, label=_words[n]) print mean_reggresion pl.xticks(np.arange(6) * 6 + 2, p_names) pl.xlim(-1, 35) pl.legend() pl.show()
def test_different_methods(): mean_reggresion = zeros((5, 6)) pl.figure() word = "samochod" metods = ["momentum", "tnc", "bfgs", "cg", "rprop"] _words = [ u"Backpropagation z momentem", u"Alg. BFGS (multicore)", u"Alg. BFGS", u"Gradient sprzezony", "Alg. RProp" ] colors = [ "#FF2800".lower(), "#FFB800".lower(), "#1729B0".lower(), "#007929".lower(), "#60016D" ] w = 3 p_names = [ "Slope", "Intercept", "R-value", "P-value", "Slope Error", "Estimation Error" ] for n, met in zip(range(5), metods): fn = "{}_network_{}.net".format(met, voice_sample.timestamp()) (network, samples) = learn_net(fn, word, rs=1, re=5, save=False, method=met) (inp, target) = get_inputs_and_outputs(samples, word, 6, 10, False) (output, reggresion) = network.test(inp, target, iprint=0) mean_reggresion[n, :] = np.mean(reggresion, 0) x = np.arange(6) * 7 + n pl.bar(x, mean_reggresion[n, :], color=colors[n], width=0.9, label=_words[n]) print mean_reggresion pl.xticks(np.arange(6) * 7 + 2, p_names) pl.xlim(-1, 44) pl.legend() pl.show() pass
def test_and_plot(): mean_reggresion = zeros((4,6)) pl.figure() _words=[u"Imie", u"Nazwisko", u"Samochód", u"Kot"] colors= ["#FF2800".lower(), "#FFB800".lower(), "#1729B0".lower(), "#007929".lower()] w = 3 p_names = ["Slope", "Intercept", "R-value", "P-value", "Slope Error", "Estimation Error"] for n, word in zip(range(4), voice_sample.WORDS): fn = "{}_network_{}.net".format(word, voice_sample.timestamp() ) (network, samples) = learn_net(fn, word, rs=1, re=5, save=False) (inp, target) = get_inputs_and_outputs(samples, word, 6,10,False) (output, reggresion) = network.test(inp, target, iprint=0) mean_reggresion[n,:] = np.mean(reggresion,0) x = np.arange(6)*6 + n pl.bar(x, mean_reggresion[n,:], color=colors[n], width=0.9, label=_words[n]) print mean_reggresion pl.xticks( np.arange(6)*6+2, p_names ) pl.xlim( -1, 35 ) pl.legend() pl.show()