Beispiel #1
0
def linesort(lines: vp.LineCollection, no_flip: bool = True):
    """
    Sort lines to minimize the pen-up travel distance.

    Note: this process can be lengthy depending on the total number of line. Consider using
    `linemerge` before `linesort` to reduce the total number of line and thus significantly
    optimizing the overall plotting time.
    """
    if len(lines) < 2:
        return lines

    index = vp.LineIndex(lines[1:], reverse=not no_flip)
    new_lines = vp.LineCollection([lines[0]])

    while len(index) > 0:
        idx, reverse = index.find_nearest(new_lines[-1][-1])
        line = index.pop(idx)
        if reverse:
            line = np.flip(line)
        new_lines.append(line)

    logging.info(
        f"optimize: reduced pen-up (distance, mean, median) from {lines.pen_up_length()} to "
        f"{new_lines.pen_up_length()}"
    )

    return new_lines
Beispiel #2
0
def linesort(
    lines: vp.LineCollection,
    no_flip: bool = True,
    two_opt: bool = False,
    passes: int = 250,
    work: bool = False,
):
    """
    Sort lines to minimize the pen-up travel distance.

    Note: this process can be lengthy depending on the total number of line. Consider using
    `linemerge` before `linesort` to reduce the total number of line and thus significantly
    optimizing the overall plotting time.
    """
    if len(lines) < 2:
        return lines

    index = vp.LineIndex(lines[1:], reverse=not no_flip)
    new_lines = vp.LineCollection([lines[0]])

    while len(index) > 0:
        idx, reverse = index.find_nearest(new_lines[-1][-1])
        line = index.pop(idx)
        if reverse:
            line = np.flip(line)
        new_lines.append(line)

    original = lines.pen_up_length()
    replacement = new_lines.pen_up_length()
    if original[0] < replacement[0]:
        logging.info(
            f"optimize: could not improve pen-up distance {original} to {replacement}"
        )
        new_lines = lines
        replacement = original
    else:
        logging.info(
            f"optimize: reduced pen-up (distance, mean, median) from {original} to {replacement}"
        )

    if two_opt:
        current_pass = 1
        min_value = -1e-10  # Do not swap on rounding error.
        length = len(new_lines)
        endpoints = np.zeros((length, 4), dtype="complex")
        # start, index, reverse-index, end
        for i in range(length):
            endpoints[i] = new_lines[i][0], i, ~i, new_lines[i][-1]
        indexes0 = np.arange(0, length - 1)
        indexes1 = indexes0 + 1

        def work_progress(pos):
            starts = endpoints[indexes0, -1]
            ends = endpoints[indexes1, 0]
            dists = np.abs(starts - ends)
            dist_sum = dists.sum()
            percent = "%.02f" % (100 * pos / length)
            print(
                f"pen-up distance is {dist_sum}. {percent}% done with pass {current_pass}/{passes}"
            )
            return dist_sum

        improved = True
        while improved:
            improved = False

            first = endpoints[0][0]
            pen_ups = endpoints[indexes0, -1]
            pen_downs = endpoints[indexes1, 0]

            delta = np.abs(first - pen_downs) - np.abs(pen_ups - pen_downs)
            index = np.argmin(delta)
            if delta[index] < min_value:
                endpoints[:index + 1] = np.flip(
                    endpoints[:index + 1],
                    (0, 1))  # top to bottom, and right to left flips.
                improved = True
                if work:
                    work_progress(1)
            for mid in range(1, length - 1):
                idxs = np.arange(mid, length - 1)

                mid_source = endpoints[mid - 1, -1]
                mid_dest = endpoints[mid, 0]
                pen_ups = endpoints[idxs, -1]
                pen_downs = endpoints[idxs + 1, 0]
                delta = (np.abs(mid_source - pen_ups) +
                         np.abs(mid_dest - pen_downs) -
                         np.abs(pen_ups - pen_downs) -
                         np.abs(mid_source - mid_dest))
                index = np.argmin(delta)
                if delta[index] < min_value:
                    endpoints[mid:mid + index + 1] = np.flip(
                        endpoints[mid:mid + index + 1], (0, 1))
                    improved = True
                    if work:
                        work_progress(mid)

            last = endpoints[-1, -1]
            pen_ups = endpoints[indexes0, -1]
            pen_downs = endpoints[indexes1, 0]

            delta = np.abs(pen_ups - last) - np.abs(pen_ups - pen_downs)
            index = np.argmin(delta)
            if delta[index] < min_value:
                endpoints[index + 1:] = np.flip(
                    endpoints[index + 1:],
                    (0, 1))  # top to bottom, and right to left flips.
                improved = True
                if work:
                    work_progress(length)
            if current_pass >= passes:
                break
            current_pass += 1

        # Two-opt complete.
        order = endpoints[:, 1]
        reordered = list()
        for i in range(length):
            pos = int(order[i].real)
            if pos < 0:
                pos = ~pos
                new_lines.lines[pos] = np.flip(new_lines.lines[pos])
            reordered.append(new_lines.lines[pos])
        new_lines.lines.clear()
        new_lines.extend(reordered)
        logging.info(
            f"optimize: two-op further reduced pen-up (distance, mean, median) from {replacement} to {new_lines.pen_up_length()}"
        )

    return new_lines
Beispiel #3
0
def linesort(lines: vp.LineCollection, no_flip: bool, two_opt: bool, passes: int):
    """
    Sort lines to minimize the pen-up travel distance.

    This command reorders the paths within layers such as to minimize the total pen-up
    distance. By default, it will also invert the path direction if it can further optimize the
    pen-up distance. This behavior can be disabled using the `--no-flip` option.

    By default, a fast, greedy algorithm is used. Although it will dramatically reduce the
    pen-up distance in most situation, it trades execution speed for optimality. Further
    optimization using the two-opt algorithm can be enabled using the `--two-opt` option. Since
    this greatly increase processing time, this feature is mostly useful for special cases such
    as when the same design must be plotted multiple times.

    When using `--two-opt`, detailed progress indication are available in the debug output,
    which is enabled using the `-vv` global option:

        $ vpype -vv [...] linesort --two-opt [...]

    Note: to further optimize the plotting time, consider using `linemerge` before `linesort`.
    """
    if len(lines) < 2:
        return lines

    line_index = vp.LineIndex(lines[1:], reverse=not no_flip)
    new_lines = vp.LineCollection([lines[0]])

    while len(line_index) > 0:
        # noinspection PyShadowingNames
        idx, reverse = line_index.find_nearest(new_lines[-1][-1])
        line = line_index.pop(idx)
        if reverse:
            line = np.flip(line)
        new_lines.append(line)

    original = lines.pen_up_length()
    replacement = new_lines.pen_up_length()
    if original[0] < replacement[0]:
        logging.info(
            f"optimize: could not improve pen-up distance {original} to {replacement}"
        )
        new_lines = lines
        replacement = original
    else:
        logging.info(
            f"optimize: reduced pen-up (distance, mean, median) from {original} to "
            f"{replacement}"
        )

    if two_opt:
        current_pass = 1
        min_value = -1e-10  # Do not swap on rounding error.
        length = len(new_lines)
        endpoints = np.zeros((length, 4), dtype="complex")
        # start, index, reverse-index, end
        for i in range(length):
            endpoints[i] = new_lines[i][0], i, ~i, new_lines[i][-1]
        indexes0 = np.arange(0, length - 1)
        indexes1 = indexes0 + 1

        # noinspection PyShadowingNames
        def log_progress(pos):
            # only compute progress if debug output is enable
            if logging.getLogger().level > logging.DEBUG:
                return
            starts = endpoints[indexes0, -1]
            ends = endpoints[indexes1, 0]
            dists = np.abs(starts - ends)
            dist_sum = dists.sum()
            logging.debug(
                f"optimize: pen-up distance is {dist_sum}. {100 * pos / length:.02f}% done "
                f"with pass {current_pass}/{passes}"
            )

        improved = True
        while improved:
            improved = False

            first = endpoints[0][0]
            pen_ups = endpoints[indexes0, -1]
            pen_downs = endpoints[indexes1, 0]

            delta = np.abs(first - pen_downs) - np.abs(pen_ups - pen_downs)
            index = int(np.argmin(delta))
            if delta[index] < min_value:
                endpoints[: index + 1] = np.flip(
                    endpoints[: index + 1], (0, 1)
                )  # top to bottom, and right to left flips.
                improved = True
                log_progress(1)
            for mid in range(1, length - 1):
                idxs = np.arange(mid, length - 1)

                mid_source = endpoints[mid - 1, -1]
                mid_dest = endpoints[mid, 0]
                pen_ups = endpoints[idxs, -1]
                pen_downs = endpoints[idxs + 1, 0]
                delta = (
                    np.abs(mid_source - pen_ups)
                    + np.abs(mid_dest - pen_downs)
                    - np.abs(pen_ups - pen_downs)
                    - np.abs(mid_source - mid_dest)
                )
                index = int(np.argmin(delta))
                if delta[index] < min_value:
                    endpoints[mid : mid + index + 1] = np.flip(
                        endpoints[mid : mid + index + 1], (0, 1)
                    )
                    improved = True
                    log_progress(mid)

            last = endpoints[-1, -1]
            pen_ups = endpoints[indexes0, -1]
            pen_downs = endpoints[indexes1, 0]

            delta = np.abs(pen_ups - last) - np.abs(pen_ups - pen_downs)
            index = int(np.argmin(delta))
            if delta[index] < min_value:
                endpoints[index + 1 :] = np.flip(
                    endpoints[index + 1 :], (0, 1)
                )  # top to bottom, and right to left flips.
                improved = True
                log_progress(length)
            if current_pass >= passes:
                break
            current_pass += 1

        # Two-opt complete.
        order = endpoints[:, 1]
        reordered = list()
        for i in range(length):
            pos = int(order[i].real)
            if pos < 0:
                pos = ~pos
                new_lines.lines[pos] = np.flip(new_lines.lines[pos])
            reordered.append(new_lines.lines[pos])
        new_lines.lines.clear()
        new_lines.extend(reordered)
        logging.info(
            f"optimize: two-op further reduced pen-up (distance, mean, median) from "
            f"{replacement} to {new_lines.pen_up_length()}"
        )

    return new_lines