Beispiel #1
0
print("All geoms in Vehicle.")
print(geoms)

# Add Fuse
fuse_id = vsp.AddGeom("FUSELAGE")

# Get XSec Surf ID
xsurf_id = vsp.GetXSecSurf(fuse_id, 0)

# Change Type of First XSec
vsp.ChangeXSecShape(xsurf_id, 0, vsp.XS_SUPER_ELLIPSE)
errorMgr.PopErrorAndPrint(stdout)

# Change Type First XSec Properties
xsec_id = vsp.GetXSec(xsurf_id, 0)
width_id = vsp.GetXSecParm(xsec_id, "Super_Width")
height_id = vsp.GetXSecParm(xsec_id, "Super_Height")
vsp.SetParmVal(width_id, 4.0)
vsp.SetParmVal(height_id, 2.0)

# Copy Cross-Section to Clipboard
vsp.CopyXSec(fuse_id, 0)

# Paste Cross-Section
vsp.PasteXSec(fuse_id, 1)
vsp.PasteXSec(fuse_id, 2)
vsp.PasteXSec(fuse_id, 3)

# Change Type to File XSec

vsp.ChangeXSecShape(xsurf_id, 0, vsp.XS_FILE_FUSE)
Beispiel #2
0
def vsp_read_wing(wing_id, units_type='SI'):
    """This reads an OpenVSP wing vehicle geometry and writes it into a SUAVE wing format.

	Assumptions:
	1. OpenVSP wing is divided into segments ("XSecs" in VSP).
	2. Written for OpenVSP 3.21.1

	Source:
	N/A

	Inputs:
	0. Pre-loaded VSP vehicle in memory, via vsp_read.
	1. VSP 10-digit geom ID for wing.
	2. units_type set to 'SI' (default) or 'Imperial'.

	Outputs:
	Writes SUAVE wing object, with these geometries, from VSP:
		Wings.Wing.    (* is all keys)
			origin                                  [m] in all three dimensions
			spans.projected                         [m]
			chords.root                             [m]
			chords.tip                              [m]
			aspect_ratio                            [-]
			sweeps.quarter_chord                    [radians]
			twists.root                             [radians]
			twists.tip                              [radians]
			thickness_to_chord                      [-]
			dihedral                                [radians]
			symmetric                               <boolean>
			tag                                     <string>
			areas.exposed                           [m^2]
			areas.reference                         [m^2]
			areas.wetted                            [m^2]
			Segments.
			  tag                                   <string>
			  twist                                 [radians]
			  percent_span_location                 [-]  .1 is 10%
			  root_chord_percent                    [-]  .1 is 10%
			  dihedral_outboard                     [radians]
			  sweeps.quarter_chord                  [radians]
			  thickness_to_chord                    [-]
			  airfoil                               <NACA 4-series, 6 series, or airfoil file>

	Properties Used:
	N/A
	"""

    # Check if this is vertical tail, this seems like a weird first step but it's necessary
    # Get the initial rotation to get the dihedral angles
    x_rot = vsp.GetParmVal(wing_id, 'X_Rotation', 'XForm')
    if x_rot >= 70:
        wing = SUAVE.Components.Wings.Vertical_Tail()
        wing.vertical = True
        x_rot = (90 - x_rot) * Units.deg
    else:
        # Instantiate a wing
        wing = SUAVE.Components.Wings.Wing()

    # Set the units
    if units_type == 'SI':
        units_factor = Units.meter * 1.
    else:
        units_factor = Units.foot * 1.

    # Apply a tag to the wing
    if vsp.GetGeomName(wing_id):
        tag = vsp.GetGeomName(wing_id)
        tag = tag.translate(t_table)
        wing.tag = tag
    else:
        wing.tag = 'winggeom'

    # Top level wing parameters
    # Wing origin
    wing.origin[0][0] = vsp.GetParmVal(wing_id, 'X_Location',
                                       'XForm') * units_factor
    wing.origin[0][1] = vsp.GetParmVal(wing_id, 'Y_Location',
                                       'XForm') * units_factor
    wing.origin[0][2] = vsp.GetParmVal(wing_id, 'Z_Location',
                                       'XForm') * units_factor

    # Wing Symmetry
    sym_planar = vsp.GetParmVal(wing_id, 'Sym_Planar_Flag', 'Sym')
    sym_origin = vsp.GetParmVal(wing_id, 'Sym_Ancestor', 'Sym')

    # Check for symmetry
    if sym_planar == 2. and sym_origin == 1.:  #origin at wing, not vehicle
        wing.symmetric = True
    else:
        wing.symmetric = False

    #More top level parameters
    total_proj_span = vsp.GetParmVal(wing_id, 'TotalProjectedSpan',
                                     'WingGeom') * units_factor
    wing.aspect_ratio = vsp.GetParmVal(wing_id, 'TotalAR', 'WingGeom')
    wing.areas.reference = vsp.GetParmVal(wing_id, 'TotalArea',
                                          'WingGeom') * units_factor**2
    wing.spans.projected = total_proj_span

    # Check if this is a single segment wing
    xsec_surf_id = vsp.GetXSecSurf(wing_id,
                                   0)  # This is how VSP stores surfaces.
    x_sec_1 = vsp.GetXSec(xsec_surf_id, 1)
    x_sec_1_span_parm = vsp.GetXSecParm(x_sec_1, 'Span')
    x_sec_1_span = vsp.GetParmVal(x_sec_1_span_parm) * (
        1 + wing.symmetric) * units_factor

    if x_sec_1_span == wing.spans.projected:
        single_seg = True
    else:
        single_seg = False

    segment_num = vsp.GetNumXSec(
        xsec_surf_id
    )  # Get number of wing segments (is one more than the VSP GUI shows).
    x_sec = vsp.GetXSec(xsec_surf_id, 0)
    chord_parm = vsp.GetXSecParm(x_sec, 'Root_Chord')

    total_chord = vsp.GetParmVal(chord_parm)

    span_sum = 0.  # Non-projected.
    proj_span_sum = 0.  # Projected.
    segment_spans = [None] * (segment_num)  # Non-projected.
    segment_dihedral = [None] * (segment_num)
    segment_sweeps_quarter_chord = [None] * (segment_num)

    # Check for wing segment *inside* fuselage, then skip XSec_0 to start at first exposed segment.
    if total_chord == 1.:
        start = 1
        xsec_surf_id = vsp.GetXSecSurf(wing_id, 1)
        x_sec = vsp.GetXSec(xsec_surf_id, 0)
        chord_parm = vsp.GetXSecParm(x_sec, 'Tip_Chord')
        root_chord = vsp.GetParmVal(chord_parm) * units_factor
    else:
        start = 0
        root_chord = total_chord * units_factor

    # -------------
    # Wing segments
    # -------------

    if single_seg == False:

        # Convert VSP XSecs to SUAVE segments. (Wing segments are defined by outboard sections in VSP, but inboard sections in SUAVE.)
        for i in range(start, segment_num + 1):
            segment = SUAVE.Components.Wings.Segment()
            segment.tag = 'Section_' + str(i)
            thick_cord = vsp.GetParmVal(wing_id, 'ThickChord',
                                        'XSecCurve_' + str(i - 1))
            segment.thickness_to_chord = thick_cord  # Thick_cord stored for use in airfoil, below.
            segment_root_chord = vsp.GetParmVal(
                wing_id, 'Root_Chord', 'XSec_' + str(i)) * units_factor
            segment.root_chord_percent = segment_root_chord / root_chord
            segment.percent_span_location = proj_span_sum / (total_proj_span /
                                                             2)
            segment.twist = vsp.GetParmVal(wing_id, 'Twist',
                                           'XSec_' + str(i - 1)) * Units.deg

            if i == start:
                wing.thickness_to_chord = thick_cord

            if i < segment_num:  # This excludes the tip xsec, but we need a segment in SUAVE to store airfoil.
                sweep = vsp.GetParmVal(wing_id, 'Sweep',
                                       'XSec_' + str(i)) * Units.deg
                sweep_loc = vsp.GetParmVal(wing_id, 'Sweep_Location',
                                           'XSec_' + str(i))
                AR = vsp.GetParmVal(wing_id, 'Aspect', 'XSec_' + str(i))
                taper = vsp.GetParmVal(wing_id, 'Taper', 'XSec_' + str(i))

                segment_sweeps_quarter_chord[i] = convert_sweep(
                    sweep, sweep_loc, 0.25, AR, taper)
                segment.sweeps.quarter_chord = segment_sweeps_quarter_chord[
                    i]  # Used again, below

                # Used for dihedral computation, below.
                segment_dihedral[i] = vsp.GetParmVal(
                    wing_id, 'Dihedral', 'XSec_' + str(i)) * Units.deg + x_rot
                segment.dihedral_outboard = segment_dihedral[i]

                segment_spans[i] = vsp.GetParmVal(
                    wing_id, 'Span', 'XSec_' + str(i)) * units_factor
                proj_span_sum += segment_spans[i] * np.cos(segment_dihedral[i])
                span_sum += segment_spans[i]
            else:
                segment.root_chord_percent = (vsp.GetParmVal(
                    wing_id, 'Tip_Chord',
                    'XSec_' + str(i - 1))) * units_factor / total_chord

            # XSec airfoil
            jj = i - 1  # Airfoil index i-1 because VSP airfoils and sections are one index off relative to SUAVE.
            xsec_id = str(vsp.GetXSec(xsec_surf_id, jj))
            airfoil = Airfoil()
            if vsp.GetXSecShape(
                    xsec_id
            ) == vsp.XS_FOUR_SERIES:  # XSec shape: NACA 4-series
                camber = vsp.GetParmVal(wing_id, 'Camber',
                                        'XSecCurve_' + str(jj))

                if camber == 0.:
                    camber_loc = 0.
                else:
                    camber_loc = vsp.GetParmVal(wing_id, 'CamberLoc',
                                                'XSecCurve_' + str(jj))

                airfoil.thickness_to_chord = thick_cord
                camber_round = int(np.around(camber * 100))
                camber_loc_round = int(np.around(camber_loc * 10))
                thick_cord_round = int(np.around(thick_cord * 100))
                airfoil.tag = 'NACA ' + str(camber_round) + str(
                    camber_loc_round) + str(thick_cord_round)

            elif vsp.GetXSecShape(
                    xsec_id) == vsp.XS_SIX_SERIES:  # XSec shape: NACA 6-series
                thick_cord_round = int(np.around(thick_cord * 100))
                a_value = vsp.GetParmVal(wing_id, 'A', 'XSecCurve_' + str(jj))
                ideal_CL = int(
                    np.around(
                        vsp.GetParmVal(wing_id, 'IdealCl',
                                       'XSecCurve_' + str(jj)) * 10))
                series_vsp = int(
                    vsp.GetParmVal(wing_id, 'Series', 'XSecCurve_' + str(jj)))
                series_dict = {
                    0: '63',
                    1: '64',
                    2: '65',
                    3: '66',
                    4: '67',
                    5: '63A',
                    6: '64A',
                    7: '65A'
                }  # VSP series values.
                series = series_dict[series_vsp]
                airfoil.tag = 'NACA ' + series + str(ideal_CL) + str(
                    thick_cord_round) + ' a=' + str(np.around(a_value, 1))

            elif vsp.GetXSecShape(
                    xsec_id
            ) == vsp.XS_FILE_AIRFOIL:  # XSec shape: 12 is type AF_FILE
                airfoil.thickness_to_chord = thick_cord
                airfoil.points = vsp.GetAirfoilCoordinates(
                    wing_id, float(jj / segment_num))
                # VSP airfoil API calls get coordinates and write files with the final argument being the fraction of segment position, regardless of relative spans.
                # (Write the root airfoil with final arg = 0. Write 4th airfoil of 5 segments with final arg = .8)
                vsp.WriteSeligAirfoil(
                    str(wing.tag) + '_airfoil_XSec_' + str(jj) + '.dat',
                    wing_id, float(jj / segment_num))
                airfoil.coordinate_file = 'str(wing.tag)' + '_airfoil_XSec_' + str(
                    jj) + '.dat'
                airfoil.tag = 'AF_file'

                segment.append_airfoil(airfoil)

            wing.Segments.append(segment)

        # Wing dihedral
        proj_span_sum_alt = 0.
        span_sum_alt = 0.
        sweeps_sum = 0.

        for ii in range(start, segment_num):
            span_sum_alt += segment_spans[ii]
            proj_span_sum_alt += segment_spans[ii] * np.cos(
                segment_dihedral[ii]
            )  # Use projected span to find total wing dihedral.
            sweeps_sum += segment_spans[ii] * np.tan(
                segment_sweeps_quarter_chord[ii])

        wing.dihedral = np.arccos(proj_span_sum_alt / span_sum_alt)
        wing.sweeps.quarter_chord = -np.arctan(
            sweeps_sum / span_sum_alt)  # Minus sign makes it positive sweep.

        # Add a tip segment, all values are zero except the tip chord
        tc = vsp.GetParmVal(wing_id, 'Tip_Chord',
                            'XSec_' + str(segment_num - 1)) * units_factor
        segment = SUAVE.Components.Wings.Segment()
        segment.percent_span_location = 1.0
        segment.root_chord_percent = tc / root_chord

        # Chords
        wing.chords.root = vsp.GetParmVal(wing_id, 'Tip_Chord',
                                          'XSec_0') * units_factor
        wing.chords.tip = tc
        wing.chords.mean_geometric = wing.areas.reference / wing.spans.projected

        # Just double calculate and fix things:
        wing = wing_segmented_planform(wing)

    else:
        # Single segment

        # Get ID's
        x_sec_1_dih_parm = vsp.GetXSecParm(x_sec_1, 'Dihedral')
        x_sec_1_sweep_parm = vsp.GetXSecParm(x_sec_1, 'Sweep')
        x_sec_1_sweep_loc_parm = vsp.GetXSecParm(x_sec_1, 'Sweep_Location')
        x_sec_1_taper_parm = vsp.GetXSecParm(x_sec_1, 'Taper')
        x_sec_1_rc_parm = vsp.GetXSecParm(x_sec_1, 'Root_Chord')
        x_sec_1_tc_parm = vsp.GetXSecParm(x_sec_1, 'Tip_Chord')

        # Calcs
        sweep = vsp.GetParmVal(x_sec_1_sweep_parm) * Units.deg
        sweep_loc = vsp.GetParmVal(x_sec_1_sweep_loc_parm)
        taper = vsp.GetParmVal(x_sec_1_taper_parm)
        c_4_sweep = convert_sweep(sweep, sweep_loc, 0.25, wing.aspect_ratio,
                                  taper)

        # Pull and pack
        wing.sweeps.quarter_chord = c_4_sweep
        wing.taper = taper
        wing.dihedral = vsp.GetParmVal(x_sec_1_dih_parm) * Units.deg + x_rot
        wing.chords.root = vsp.GetParmVal(x_sec_1_rc_parm) * units_factor
        wing.chords.tip = vsp.GetParmVal(x_sec_1_tc_parm) * units_factor
        wing.chords.mean_geometric = wing.areas.reference / wing.spans.projected

        # Just double calculate and fix things:
        wing = wing_planform(wing)

    # Twists
    wing.twists.root = vsp.GetParmVal(wing_id, 'Twist', 'XSec_0') * Units.deg
    wing.twists.tip = vsp.GetParmVal(
        wing_id, 'Twist', 'XSec_' + str(segment_num - 1)) * Units.deg

    return wing
Beispiel #3
0
def vsp_read_fuselage(fuselage_id, units_type='SI', fineness=True):
    """This reads an OpenVSP fuselage geometry and writes it to a SUAVE fuselage format.

	Assumptions:
	1. OpenVSP fuselage is "conventionally shaped" (generally narrow at nose and tail, wider in center). 
	2. Fuselage is designed in VSP as it appears in real life. That is, the VSP model does not rely on
	   superficial elements such as canopies, stacks, or additional fuselages to cover up internal lofting oddities.
	3. This program will NOT account for multiple geometries comprising the fuselage. For example: a wingbox mounted beneath
	   is a separate geometry and will NOT be processed.
	4. Fuselage origin is located at nose. VSP file origin can be located anywhere, preferably at the forward tip
	   of the vehicle or in front (to make all X-coordinates of vehicle positive).
	5. Written for OpenVSP 3.21.1
	
	Source:
	N/A

	Inputs:
	0. Pre-loaded VSP vehicle in memory, via vsp_read.
	1. VSP 10-digit geom ID for fuselage.
	2. Units_type set to 'SI' (default) or 'Imperial'.
	3. Boolean for whether or not to compute fuselage finenesses (default = True).
	4. Uses exterior function get_vsp_areas, in SUAVE/trunk/SUAVE/Input_Output/OpenVSP.
	
	Outputs:
	Writes SUAVE fuselage, with these geometries:           (all defaults are SI, but user may specify Imperial)

		Fuselages.Fuselage.			
			origin                                  [m] in all three dimensions
			width                                   [m]
			lengths.
			  total                                 [m]
			  nose                                  [m]
			  tail                                  [m]
			heights.
			  maximum                               [m]
			  at_quarter_length                     [m]
			  at_three_quarters_length              [m]
			effective_diameter                      [m]
			fineness.nose                           [-] ratio of nose section length to fuselage effective diameter
			fineness.tail                           [-] ratio of tail section length to fuselage effective diameter
			areas.wetted                            [m^2]
			tag                                     <string>
			segment[].   (segments are in ordered container and callable by number)
			  vsp.shape                               [point,circle,round_rect,general_fuse,fuse_file]
			  vsp.xsec_id                             <10 digit string>
			  percent_x_location
			  percent_z_location
			  height
			  width
			  length
			  effective_diameter
			  tag
			vsp.xsec_num                              <integer of fuselage segment quantity>
			vsp.xsec_surf_id                          <10 digit string>

	Properties Used:
	N/A
	"""
    fuselage = SUAVE.Components.Fuselages.Fuselage()

    if units_type == 'SI':
        units_factor = Units.meter * 1.
    else:
        units_factor = Units.foot * 1.

    if vsp.GetGeomName(fuselage_id):
        fuselage.tag = vsp.GetGeomName(fuselage_id)
    else:
        fuselage.tag = 'FuselageGeom'

    fuselage.origin[0][0] = vsp.GetParmVal(fuselage_id, 'X_Location',
                                           'XForm') * units_factor
    fuselage.origin[0][1] = vsp.GetParmVal(fuselage_id, 'Y_Location',
                                           'XForm') * units_factor
    fuselage.origin[0][2] = vsp.GetParmVal(fuselage_id, 'Z_Location',
                                           'XForm') * units_factor

    fuselage.lengths.total = vsp.GetParmVal(fuselage_id, 'Length',
                                            'Design') * units_factor
    fuselage.vsp_data.xsec_surf_id = vsp.GetXSecSurf(
        fuselage_id, 0)  # There is only one XSecSurf in geom.
    fuselage.vsp_data.xsec_num = vsp.GetNumXSec(
        fuselage.vsp_data.xsec_surf_id)  # Number of xsecs in fuselage.

    x_locs = []
    heights = []
    widths = []
    eff_diams = []
    lengths = []

    # -----------------
    # Fuselage segments
    # -----------------

    for ii in range(0, fuselage.vsp_data.xsec_num):

        # Create the segment
        x_sec = vsp.GetXSec(fuselage.vsp_data.xsec_surf_id, ii)  # VSP XSec ID.
        segment = SUAVE.Components.Fuselages.Segment()
        segment.vsp_data.xsec_id = x_sec
        segment.tag = 'segment_' + str(ii)

        # Pull out Parms that will be needed
        X_Loc_P = vsp.GetXSecParm(x_sec, 'XLocPercent')
        Z_Loc_P = vsp.GetXSecParm(x_sec, 'ZLocPercent')

        segment.percent_x_location = vsp.GetParmVal(
            X_Loc_P)  # Along fuselage length.
        segment.percent_z_location = vsp.GetParmVal(
            Z_Loc_P)  # Vertical deviation of fuselage center.
        segment.height = vsp.GetXSecHeight(
            segment.vsp_data.xsec_id) * units_factor
        segment.width = vsp.GetXSecWidth(
            segment.vsp_data.xsec_id) * units_factor
        segment.effective_diameter = (segment.height + segment.width) / 2.

        x_locs.append(segment.percent_x_location
                      )  # Save into arrays for later computation.
        heights.append(segment.height)
        widths.append(segment.width)
        eff_diams.append(segment.effective_diameter)

        if ii != (
                fuselage.vsp_data.xsec_num - 1
        ):  # Segment length: stored as length since previous segment. (last segment will have length 0.0.)
            next_xsec = vsp.GetXSec(fuselage.vsp_data.xsec_surf_id, ii)
            X_Loc_P_p = vsp.GetXSecParm(next_xsec, 'XLocPercent')
            percent_x_loc_p1 = vsp.GetParmVal(X_Loc_P_p)
            segment.length = fuselage.lengths.total * (
                percent_x_loc_p1 - segment.percent_x_location) * units_factor
        else:
            segment.length = 0.0
        lengths.append(segment.length)

        shape = vsp.GetXSecShape(segment.vsp_data.xsec_id)
        shape_dict = {
            0: 'point',
            1: 'circle',
            2: 'ellipse',
            3: 'super ellipse',
            4: 'rounded rectangle',
            5: 'general fuse',
            6: 'fuse file'
        }
        segment.vsp_data.shape = shape_dict[shape]

        fuselage.Segments.append(segment)

    fuselage.heights.at_quarter_length = get_fuselage_height(
        fuselage, .25)  # Calls get_fuselage_height function (below).
    fuselage.heights.at_three_quarters_length = get_fuselage_height(
        fuselage, .75)
    fuselage.heights.at_wing_root_quarter_chord = get_fuselage_height(
        fuselage, .4)

    fuselage.heights.maximum = max(heights)  # Max segment height.
    fuselage.width = max(widths)  # Max segment width.
    fuselage.effective_diameter = max(eff_diams)  # Max segment effective diam.

    fuselage.areas.front_projected = np.pi * (
        (fuselage.effective_diameter) / 2)**2

    eff_diam_gradients_fwd = np.array(eff_diams[1:]) - np.array(
        eff_diams[:-1])  # Compute gradients of segment effective diameters.
    eff_diam_gradients_fwd = np.multiply(eff_diam_gradients_fwd, lengths[:-1])

    fuselage = compute_fuselage_fineness(fuselage, x_locs, eff_diams,
                                         eff_diam_gradients_fwd)

    return fuselage
Beispiel #4
0
def read_vsp_wing(wing_id, units_type='SI',write_airfoil_file=True): 	
    """This reads an OpenVSP wing vehicle geometry and writes it into a SUAVE wing format.

    Assumptions:
    1. OpenVSP wing is divided into segments ("XSecs" in VSP).
    2. Written for OpenVSP 3.21.1

    Source:
    N/A

    Inputs:
    1. VSP 10-digit geom ID for wing.
    2. units_type set to 'SI' (default) or 'Imperial'.

    Outputs:
    Writes SUAVE wing object, with these geometries, from VSP:
    	Wings.Wing.    (* is all keys)
    		origin                                  [m] in all three dimensions
    		spans.projected                         [m]
    		chords.root                             [m]
    		chords.tip                              [m]
    		aspect_ratio                            [-]
    		sweeps.quarter_chord                    [radians]
    		twists.root                             [radians]
    		twists.tip                              [radians]
    		thickness_to_chord                      [-]
    		dihedral                                [radians]
    		symmetric                               <boolean>
    		tag                                     <string>
    		areas.reference                         [m^2]
    		areas.wetted                            [m^2]
    		Segments.
    		  tag                                   <string>
    		  twist                                 [radians]
    		  percent_span_location                 [-]  .1 is 10%
    		  root_chord_percent                    [-]  .1 is 10%
    		  dihedral_outboard                     [radians]
    		  sweeps.quarter_chord                  [radians]
    		  thickness_to_chord                    [-]
    		  airfoil                               <NACA 4-series, 6 series, or airfoil file>

    Properties Used:
    N/A
    """  

    # Check if this is vertical tail, this seems like a weird first step but it's necessary
    # Get the initial rotation to get the dihedral angles
    x_rot = vsp.GetParmVal( wing_id,'X_Rotation','XForm')		
    if  x_rot >=70:
        wing = SUAVE.Components.Wings.Vertical_Tail()
        wing.vertical = True
        x_rot = (90-x_rot) * Units.deg
    else:
        # Instantiate a wing
        wing = SUAVE.Components.Wings.Wing()	
        x_rot =  x_rot  * Units.deg	

    # Set the units
    if units_type == 'SI':
        units_factor = Units.meter * 1.
    elif units_type == 'imperial':
        units_factor = Units.foot * 1.
    elif units_type == 'inches':
        units_factor = Units.inch * 1.		

    # Apply a tag to the wing
    if vsp.GetGeomName(wing_id):
        tag = vsp.GetGeomName(wing_id)
        tag = tag.translate(t_table)
        wing.tag = tag
    else: 
        wing.tag = 'winggeom'
    
    scaling           = vsp.GetParmVal(wing_id, 'Scale', 'XForm')  
    units_factor      = units_factor*scaling
        
    # Top level wing parameters
    # Wing origin
    wing.origin[0][0] = vsp.GetParmVal(wing_id, 'X_Location', 'XForm') * units_factor 
    wing.origin[0][1] = vsp.GetParmVal(wing_id, 'Y_Location', 'XForm') * units_factor 
    wing.origin[0][2] = vsp.GetParmVal(wing_id, 'Z_Location', 'XForm') * units_factor 

    # Wing Symmetry
    sym_planar = vsp.GetParmVal(wing_id, 'Sym_Planar_Flag', 'Sym')
    sym_origin = vsp.GetParmVal(wing_id, 'Sym_Ancestor_Origin_Flag', 'Sym')

    # Check for symmetry
    if sym_planar == 2. and sym_origin == 1.: #origin at wing, not vehicle
        wing.symmetric = True	
    else:
        wing.symmetric = False 

    #More top level parameters
    total_proj_span      = vsp.GetParmVal(wing_id, 'TotalProjectedSpan', 'WingGeom') * units_factor
    wing.aspect_ratio    = vsp.GetParmVal(wing_id, 'TotalAR', 'WingGeom')
    wing.areas.reference = vsp.GetParmVal(wing_id, 'TotalArea', 'WingGeom') * units_factor**2 
    wing.spans.projected = total_proj_span 

    # Check if this is a single segment wing
    xsec_surf_id      = vsp.GetXSecSurf(wing_id, 0)   # This is how VSP stores surfaces.
    x_sec_1           = vsp.GetXSec(xsec_surf_id, 1) 

    if vsp.GetNumXSec(xsec_surf_id) == 2:
        single_seg = True
    else:
        single_seg = False
    
    segment_num = vsp.GetNumXSec(xsec_surf_id) # Get number of segments

    span_sum         = 0.				# Non-projected.
    proj_span_sum    = 0.				# Projected.
    segment_spans    = [None] * (segment_num) 	        # Non-projected.
    segment_dihedral = [None] * (segment_num)
    segment_sweeps_quarter_chord = [None] * (segment_num) 

    # Necessary wing segment definitions start at XSec_1 (XSec_0 exists mainly to hold the root airfoil)
    xsec_surf_id = vsp.GetXSecSurf(wing_id, 0)
    x_sec = vsp.GetXSec(xsec_surf_id, 1)
    chord_parm = vsp.GetXSecParm(x_sec,'Root_Chord')
    root_chord = vsp.GetParmVal(chord_parm) * units_factor

    # -------------
    # Wing segments
    # -------------

    if single_seg == False:

        # Convert VSP XSecs to SUAVE segments. (Wing segments are defined by outboard sections in VSP, but inboard sections in SUAVE.) 
        for i in range(1, segment_num+1):	
            # XSec airfoil
            jj = i-1  # Airfoil index i-1 because VSP airfoils and sections are one index off relative to SUAVE.
		
            segment = SUAVE.Components.Wings.Segment()
            segment.tag                   = 'Section_' + str(i)
            thick_cord                    = vsp.GetParmVal(wing_id, 'ThickChord', 'XSecCurve_' + str(jj))
            segment.thickness_to_chord    = thick_cord	# Thick_cord stored for use in airfoil, below.		
            if i!=segment_num:
                segment_root_chord    = vsp.GetParmVal(wing_id, 'Root_Chord', 'XSec_' + str(i)) * units_factor
            else:
                segment_root_chord    = 0.0
            segment.root_chord_percent    = segment_root_chord / root_chord		
            segment.percent_span_location = proj_span_sum / (total_proj_span/(1+wing.symmetric))
            segment.twist                 = vsp.GetParmVal(wing_id, 'Twist', 'XSec_' + str(jj)) * Units.deg

            if i==1:
                wing.thickness_to_chord = thick_cord

            if i < segment_num:      # This excludes the tip xsec, but we need a segment in SUAVE to store airfoil.
                sweep     = vsp.GetParmVal(wing_id, 'Sweep', 'XSec_' + str(i)) * Units.deg
                sweep_loc = vsp.GetParmVal(wing_id, 'Sweep_Location', 'XSec_' + str(i))
                AR        = 2*vsp.GetParmVal(wing_id, 'Aspect', 'XSec_' + str(i))
                taper     = vsp.GetParmVal(wing_id, 'Taper', 'XSec_' + str(i))

                segment_sweeps_quarter_chord[i] = convert_sweep(sweep,sweep_loc,0.25,AR,taper)
                segment.sweeps.quarter_chord    = segment_sweeps_quarter_chord[i]  # Used again, below

                # Used for dihedral computation, below.
                segment_dihedral[i]	      = vsp.GetParmVal(wing_id, 'Dihedral', 'XSec_' + str(i)) * Units.deg  + x_rot
                segment.dihedral_outboard     = segment_dihedral[i]

                segment_spans[i] 	      = vsp.GetParmVal(wing_id, 'Span', 'XSec_' + str(i)) * units_factor
                proj_span_sum += segment_spans[i] * np.cos(segment_dihedral[i])	
                span_sum      += segment_spans[i]
            else:
                segment.root_chord_percent    = (vsp.GetParmVal(wing_id, 'Tip_Chord', 'XSec_' + str(i-1))) * units_factor /root_chord


            xsec_id = str(vsp.GetXSec(xsec_surf_id, jj))
            airfoil = Airfoil()
            if vsp.GetXSecShape(xsec_id) == vsp.XS_FOUR_SERIES: 	# XSec shape: NACA 4-series
                camber = vsp.GetParmVal(wing_id, 'Camber', 'XSecCurve_' + str(jj)) 

                if camber == 0.:
                    camber_loc = 0.
                else:
                    camber_loc = vsp.GetParmVal(wing_id, 'CamberLoc', 'XSecCurve_' + str(jj))

                airfoil.thickness_to_chord = thick_cord
                camber_round               = int(np.around(camber*100))
                camber_loc_round           = int(np.around(camber_loc*10)) 
                thick_cord_round           = int(np.around(thick_cord*100))
                airfoil.tag                = 'NACA ' + str(camber_round) + str(camber_loc_round) + str(thick_cord_round)	

            elif vsp.GetXSecShape(xsec_id) == vsp.XS_SIX_SERIES: 	# XSec shape: NACA 6-series
                thick_cord_round = int(np.around(thick_cord*100))
                a_value          = vsp.GetParmVal(wing_id, 'A', 'XSecCurve_' + str(jj))
                ideal_CL         = int(np.around(vsp.GetParmVal(wing_id, 'IdealCl', 'XSecCurve_' + str(jj))*10))
                series_vsp       = int(vsp.GetParmVal(wing_id, 'Series', 'XSecCurve_' + str(jj)))
                series_dict      = {0:'63',1:'64',2:'65',3:'66',4:'67',5:'63A',6:'64A',7:'65A'} # VSP series values.
                series           = series_dict[series_vsp]
                airfoil.tag      = 'NACA ' + series + str(ideal_CL) + str(thick_cord_round) + ' a=' + str(np.around(a_value,1))			


            elif vsp.GetXSecShape(xsec_id) == vsp.XS_FILE_AIRFOIL:	# XSec shape: 12 is type AF_FILE
                airfoil.thickness_to_chord = thick_cord
                # VSP airfoil API calls get coordinates and write files with the final argument being the fraction of segment position, regardless of relative spans. 
                # (Write the root airfoil with final arg = 0. Write 4th airfoil of 5 segments with final arg = .8)

            if write_airfoil_file==True:
                vsp.WriteSeligAirfoil(str(wing.tag) + '_airfoil_XSec_' + str(jj) +'.dat', wing_id, float(jj/segment_num))
                airfoil.coordinate_file    = str(wing.tag) + '_airfoil_XSec_' + str(jj) +'.dat'
                airfoil.tag                = 'airfoil'	

                segment.append_airfoil(airfoil)

            wing.Segments.append(segment)

        # Wing dihedral 
        proj_span_sum_alt = 0.
        span_sum_alt      = 0.
        sweeps_sum        = 0.			

        for ii in range(1, segment_num):
            span_sum_alt += segment_spans[ii]
            proj_span_sum_alt += segment_spans[ii] * np.cos(segment_dihedral[ii])  # Use projected span to find total wing dihedral.
            sweeps_sum += segment_spans[ii] * np.tan(segment_sweeps_quarter_chord[ii])	

        wing.dihedral              = np.arccos(proj_span_sum_alt / span_sum_alt) 
        wing.sweeps.quarter_chord  = -np.arctan(sweeps_sum / span_sum_alt)  # Minus sign makes it positive sweep.

        # Add a tip segment, all values are zero except the tip chord
        tc = vsp.GetParmVal(wing_id, 'Tip_Chord', 'XSec_' + str(segment_num-1)) * units_factor

        # Chords
        wing.chords.root              = vsp.GetParmVal(wing_id, 'Tip_Chord', 'XSec_0') * units_factor
        wing.chords.tip               = tc
        wing.chords.mean_geometric    = wing.areas.reference / wing.spans.projected

        # Just double calculate and fix things:
        wing = wing_segmented_planform(wing)


    else:
        # Single segment

        # Get ID's
        x_sec_1_dih_parm       = vsp.GetXSecParm(x_sec_1,'Dihedral')
        x_sec_1_sweep_parm     = vsp.GetXSecParm(x_sec_1,'Sweep')
        x_sec_1_sweep_loc_parm = vsp.GetXSecParm(x_sec_1,'Sweep_Location')
        x_sec_1_taper_parm     = vsp.GetXSecParm(x_sec_1,'Taper')
        x_sec_1_rc_parm        = vsp.GetXSecParm(x_sec_1,'Root_Chord')
        x_sec_1_tc_parm        = vsp.GetXSecParm(x_sec_1,'Tip_Chord')
        x_sec_1_t_parm        = vsp.GetXSecParm(x_sec_1,'ThickChord')
     
        # Calcs
        sweep     = vsp.GetParmVal(x_sec_1_sweep_parm) * Units.deg
        sweep_loc = vsp.GetParmVal(x_sec_1_sweep_loc_parm)
        taper     = vsp.GetParmVal(x_sec_1_taper_parm)
        c_4_sweep = convert_sweep(sweep,sweep_loc,0.25,wing.aspect_ratio,taper)		

        # Pull and pack
        wing.sweeps.quarter_chord  = c_4_sweep
        wing.taper                 = taper
        wing.dihedral              = vsp.GetParmVal(x_sec_1_dih_parm) * Units.deg + x_rot
        wing.chords.root           = vsp.GetParmVal(x_sec_1_rc_parm)* units_factor
        wing.chords.tip            = vsp.GetParmVal(x_sec_1_tc_parm) * units_factor	
        wing.chords.mean_geometric = wing.areas.reference / wing.spans.projected
        wing.thickness_to_chord    = vsp.GetParmVal(x_sec_1_t_parm) 

        # Just double calculate and fix things:
        wing = wing_planform(wing)		


    # Twists
    wing.twists.root      = vsp.GetParmVal(wing_id, 'Twist', 'XSec_0') * Units.deg
    wing.twists.tip       = vsp.GetParmVal(wing_id, 'Twist', 'XSec_' + str(segment_num-1)) * Units.deg

    # check if control surface (sub surfaces) are defined
    tags                 = []
    LE_flags             = []
    span_fraction_starts = []
    span_fraction_ends   = []
    chord_fractions      = []
    
    num_cs = vsp.GetNumSubSurf(wing_id)
    
    # loop through wing and get all control surface parameters 
    for cs_idx in range(num_cs):
        cs_id   = vsp.GetSubSurf(wing_id,cs_idx)
        param_names = vsp.GetSubSurfParmIDs(cs_id)
        tags.append(vsp.GetSubSurfName(cs_id))
        for p_idx in range(len(param_names)):
            if 'LE_Flag' == vsp.GetParmName(param_names[p_idx]):
                LE_flags.append(vsp.GetParmVal(param_names[p_idx]))
            if 'UStart' == vsp.GetParmName(param_names[p_idx]):
                span_fraction_starts.append(vsp.GetParmVal(param_names[p_idx]))
            if 'UEnd' == vsp.GetParmName(param_names[p_idx]):
                span_fraction_ends.append(vsp.GetParmVal(param_names[p_idx]))
            if 'Length_C_Start' == vsp.GetParmName(param_names[p_idx]):
                chord_fractions.append(vsp.GetParmVal(param_names[p_idx]))
                
    # assign control surface parameters to wings. Outer most control surface on main/horizontal wing is assigned a aileron
    for cs_idx in range(num_cs):   
        aileron_present = False
        if num_cs > 1:
            aileron_loc = np.argmax(np.array(span_fraction_starts))   
            if cs_idx == aileron_loc: 
                aileron_present = True
        if LE_flags[cs_idx] == 1.0:
            CS = SUAVE.Components.Wings.Control_Surfaces.Slat()
        else:
            if wing.vertical == True:
                CS = SUAVE.Components.Wings.Control_Surfaces.Rudder()
            else:
                if aileron_present:
                    CS = SUAVE.Components.Wings.Control_Surfaces.Aileron()
                else: 
                    CS = SUAVE.Components.Wings.Control_Surfaces.Flap()
        CS.tag                 = tags[cs_idx]
        CS.span_fraction_start = span_fraction_starts[cs_idx]*3 - 1
        CS.span_fraction_end   = span_fraction_ends[cs_idx]*3 - 1
        CS.chord_fraction      = chord_fractions[cs_idx]
        CS.span                = (CS.span_fraction_end - CS.span_fraction_start)*wing.spans.projected
        wing.append_control_surface(CS)
    
    return wing
Beispiel #5
0
def read_vsp_nacelle(nacelle_id, vsp_nacelle_type, units_type='SI'):
    """This reads an OpenVSP stack geometry or body of revolution and writes it to a SUAVE nacelle format.
    If an airfoil is defined in body-of-revolution, its coordinates are not read in due to absence of
    API functions in VSP.

    Assumptions: 
    
    Source:
    N/A

    Inputs:
    0. Pre-loaded VSP vehicle in memory, via vsp_read.
    1. VSP 10-digit geom ID for nacelle.
    2. Units_type set to 'SI' (default) or 'Imperial'. 

    Outputs:
    Writes SUAVE nacelle, with these geometries:           (all defaults are SI, but user may specify Imperial)

        Nacelles.Nacelle.	
            origin                  [m] in all three dimensions
            width                   [m]
            lengths                 [m]
            heights                 [m]
            tag                     <string>
            segment[].   (segments are in ordered container and callable by number) 
              percent_x_location    [unitless]
              percent_z_location    [unitless]
              height                [m]
              width                 [m]

    Properties Used:
    N/A
    """
    nacelle = SUAVE.Components.Nacelles.Nacelle()

    if units_type == 'SI':
        units_factor = Units.meter * 1.
    elif units_type == 'imperial':
        units_factor = Units.foot * 1.
    elif units_type == 'inches':
        units_factor = Units.inch * 1.

    if vsp.GetGeomName(nacelle_id):
        nacelle.tag = vsp.GetGeomName(nacelle_id)
    else:
        nacelle.tag = 'NacelleGeom'

    nacelle.origin[0][0] = vsp.GetParmVal(nacelle_id, 'X_Location',
                                          'XForm') * units_factor
    nacelle.origin[0][1] = vsp.GetParmVal(nacelle_id, 'Y_Location',
                                          'XForm') * units_factor
    nacelle.origin[0][2] = vsp.GetParmVal(nacelle_id, 'Z_Location',
                                          'XForm') * units_factor
    nacelle.x_rotation = vsp.GetParmVal(nacelle_id, 'X_Rotation',
                                        'XForm') * units_factor
    nacelle.y_rotation = vsp.GetParmVal(nacelle_id, 'Y_Rotation',
                                        'XForm') * units_factor
    nacelle.z_rotation = vsp.GetParmVal(nacelle_id, 'Z_Rotation',
                                        'XForm') * units_factor

    if vsp_nacelle_type == 'Stack':

        xsec_surf_id = vsp.GetXSecSurf(
            nacelle_id, 0)  # There is only one XSecSurf in geom.
        num_segs = vsp.GetNumXSec(xsec_surf_id)  # Number of xsecs in nacelle.
        abs_x_location = 0
        abs_y_location = 0
        abs_z_location = 0
        abs_x_location_vec = []
        abs_y_location_vec = []
        abs_z_location_vec = []

        for i in range(num_segs):
            # Create the segment
            xsec_id = vsp.GetXSec(xsec_surf_id, i)  # VSP XSec ID.
            segment = SUAVE.Components.Lofted_Body_Segment.Segment()
            segment.tag = 'segment_' + str(i)

            # Pull out Parms that will be needed
            X_Loc_P = vsp.GetXSecParm(xsec_id, 'XDelta')
            Y_Loc_P = vsp.GetXSecParm(xsec_id, 'YDelta')
            Z_Loc_P = vsp.GetXSecParm(xsec_id, 'XDelta')

            del_x = vsp.GetParmVal(X_Loc_P)
            del_y = vsp.GetParmVal(Y_Loc_P)
            del_z = vsp.GetParmVal(Z_Loc_P)

            abs_x_location = abs_x_location + del_x
            abs_y_location = abs_y_location + del_y
            abs_z_location = abs_z_location + del_z

            abs_x_location_vec.append(abs_x_location)
            abs_y_location_vec.append(abs_y_location)
            abs_z_location_vec.append(abs_z_location)

            shape = vsp.GetXSecShape(xsec_id)
            shape_dict = {
                0: 'point',
                1: 'circle',
                2: 'ellipse',
                3: 'super ellipse',
                4: 'rounded rectangle',
                5: 'general fuse',
                6: 'fuse file'
            }

            if shape_dict[shape] == 'point':
                segment.height = 0.0
                segment.width = 0.0
                if i == 0:
                    nacelle.flow_through = False
            else:
                segment.height = vsp.GetXSecHeight(xsec_id) * units_factor
                segment.width = vsp.GetXSecWidth(xsec_id) * units_factor
                if i == 0:
                    nacelle.flow_through = True

            nacelle.Segments.append(segment)

        nacelle.length = abs_x_location_vec[-1]
        segs = nacelle.Segments
        for seg in range(num_segs):
            segs[seg].percent_x_location = np.array(
                abs_x_location_vec) / abs_x_location_vec[-1]
            segs[seg].percent_y_location = np.array(
                abs_y_location_vec) / abs_x_location_vec[-1]
            segs[seg].percent_z_location = np.array(
                abs_z_location_vec) / abs_x_location_vec[-1]

    elif vsp_nacelle_type == 'BodyOfRevolution':
        diameter = vsp.GetParmVal(nacelle_id, "Diameter",
                                  "Design") * units_factor
        angle = vsp.GetParmVal(nacelle_id, "Diameter",
                               "Design") * Units.degrees
        ft_flag_idx = vsp.GetParmVal(nacelle_id, "Mode", "Design")
        if ft_flag_idx == 0.0:
            ft_flag = True
        else:
            ft_flag = False
        nacelle.flow_through = ft_flag

        shape = vsp.GetBORXSecShape(nacelle_id)
        shape_dict = {0:'point',1:'circle',2:'ellipse',3:'super ellipse',4:'rounded rectangle',5:'general fuse',6:'fuse file',\
                      7:'four series',8:'six series',9:'biconvex',10:'wedge',11:'editcurve',12:'file airfoil'}
        if shape_dict[shape] == 'four series':
            naf = SUAVE.Components.Airfoils.Airfoil()
            length = vsp.GetParmVal(nacelle_id, "Chord", "XSecCurve")
            thickness = int(
                round(
                    vsp.GetParmVal(nacelle_id, "ThickChord", "XSecCurve") * 10,
                    0))
            camber = int(
                round(
                    vsp.GetParmVal(nacelle_id, "Camber", "XSecCurve") * 100,
                    0))
            camber_loc = int(
                round(
                    vsp.GetParmVal(nacelle_id, "CamberLoc", "XSecCurve") * 10,
                    0))

            airfoil = str(camber) + str(camber_loc) + str(thickness)
            height = thickness
            naf.naca_4_series_airfoil = str(airfoil)
            naf.thickness_to_chord = thickness
            nacelle.append_airfoil(naf)

        elif shape_dict[shape] == 'super ellipse':
            if ft_flag:
                height = vsp.GetParmVal(nacelle_id, "Super_Height",
                                        "XSecCurve")
                diameter = vsp.GetParmVal(nacelle_id, "Diameter", "Design")
                length = vsp.GetParmVal(nacelle_id, "Super_Width", "XSecCurve")
            else:
                diameter = vsp.GetParmVal(nacelle_id, "Super_Height",
                                          "XSecCurve")
                length = vsp.GetParmVal(nacelle_id, "Super_Width", "XSecCurve")
                height = diameter / 2

        elif shape_dict[shape] == 'file airfoil':
            naf = SUAVE.Components.Airfoils.Airfoil()
            thickness_to_chord = vsp.GetParmVal(nacelle_id, "ThickChord",
                                                "XSecCurve") * units_factor
            length = vsp.GetParmVal(nacelle_id, "Chord",
                                    "XSecCurve") * units_factor
            height = thickness_to_chord * length * units_factor
            if ft_flag:
                diameter = vsp.GetParmVal(nacelle_id, "Diameter",
                                          "Design") * units_factor
            else:
                diameter = 0
            naf.thickness_to_chord = thickness_to_chord
            nacelle.append_airfoil(naf)

        nacelle.length = length
        nacelle.diameter = diameter + height / 2
        nacelle.inlet_diameter = nacelle.diameter - height
        nacelle.cowling_airfoil_angle = angle

    return nacelle