from vtkplotter import Latex, Point, show # https://matplotlib.org/tutorials/text/mathtext.html latex1 = r'x= \frac{ - b \pm \sqrt {b^2 - 4ac} }{2a}' latex2 = r'\mathcal{A}\mathrm{sin}(2 \omega t)' latex3 = r'I(Y | X)=\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right)' latex4 = r'\Gamma_{\epsilon}(x)=\left[1-e^{-2 \pi \epsilon}\right]^{1-x} \prod_{n=0}^{\infty} \frac{1-\exp (-2 \pi \epsilon(n+1))}{1-\exp (-2 \pi \epsilon(x+n))}' latex5 = r'\left( \begin{array}{l}{c t^{\prime}} \\ {x^{\prime}} \\ {y^{\prime}} \\ {z^{\prime}}\end{array}\right)=\left( \begin{array}{cccc}{\gamma} & {-\gamma \beta} & {0} & {0} \\ {-\gamma \beta} & {\gamma} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1}\end{array}\right) \left( \begin{array}{l}{c t} \\ {x} \\ {y} \\ {z}\end{array}\right)' latex6 = r'\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}' latex7 = r'x \mathrm{(arb. units)}' l = Latex(latex4, s=1, c='white', bg='', alpha=0.9, usetex=False, fromweb=False) l.crop(0.3, 0.3) # crop top and bottom 30% l.pos(2, 0, 0) p = Point() box = l.box() # return the bounding box of an actor show(p, l, box, axes=8)
from vtkplotter import Latex, show # https://matplotlib.org/tutorials/text/mathtext.html latex1 = r'x= \frac{ - b \pm \sqrt {b^2 - 4ac} }{2a}' latex2 = r'\mathcal{A}\mathrm{sin}(2 \omega t)' latex3 = r'I(Y | X)=\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right)' latex4 = r'\Gamma_{\epsilon}(x)=\left[1-e^{-2 \pi \epsilon}\right]^{1-x} \prod_{n=0}^{\infty} \frac{1-\exp (-2 \pi \epsilon(n+1))}{1-\exp (-2 \pi \epsilon(x+n))}' latex5 = r'\left( \begin{array}{l}{c t^{\prime}} \\ {x^{\prime}} \\ {y^{\prime}} \\ {z^{\prime}}\end{array}\right)=\left( \begin{array}{cccc}{\gamma} & {-\gamma \beta} & {0} & {0} \\ {-\gamma \beta} & {\gamma} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1}\end{array}\right) \left( \begin{array}{l}{c t} \\ {x} \\ {y} \\ {z}\end{array}\right)' latex6 = r'\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}' latex7 = r'x \mathrm{(arb. units)}' l = Latex(latex4, s=1, c='white', bg='', alpha=0.9, usetex=False, fromweb=False) l.crop(0.3, 0.3) # crop top and bottom 30% l.pos(2,0,0) box = l.box() # return the bounding box of a mesh show(l, box, axes=8)