Beispiel #1
0
def compute_agg_rvecs(rvecs_list, idxs_list, aids_list, maws_list):
    """
    Sums and normalizes all rvecs that belong to the same word and the same
    annotation id

    Example:
        >>> from ibeis.model.hots.smk.smk_speed import *  # NOQA
        >>> from ibeis.model.hots.smk import smk_debug
        >>> words, wx_sublist, aids_list, idxs_list, idx2_vec, maws_list = smk_debug.testdata_nonagg_rvec()
        >>> rvecs_list = compute_nonagg_rvec_listcomp(words, wx_sublist, idxs_list, idx2_vec)

    """
    #assert len(idxs_list) == len(rvecs_list)
    # group members of each word by aid, we will collapse these groups
    grouptup_list = [clustertool.group_indicies(aids) for aids in aids_list]
    # Agg aids
    aggaids_list = [tup[0] for tup in grouptup_list]
    groupxs_list = [tup[1] for tup in grouptup_list]
    # Aggregate vecs that belong to the same aid, for each word
    # (weighted aggregation with multi-assign-weights)
    aggvecs_list = [
        np.vstack([smk_core.aggregate_rvecs(rvecs.take(xs, axis=0), maws.take(xs)) for xs in groupxs])
        if len(groupxs) > 0 else
        np.empty((0, VEC_DIM), dtype=FLOAT_TYPE)
        for rvecs, maws, groupxs in zip(rvecs_list, maws_list, groupxs_list)]
    # Agg idxs
    aggidxs_list = [[idxs.take(xs) for xs in groupxs]
                    for idxs, groupxs in zip(idxs_list, groupxs_list)]
    aggmaws_list = [np.array([maws.take(xs).prod() for xs in groupxs])
                    for maws, groupxs in zip(maws_list, groupxs_list)]
    return aggvecs_list, aggaids_list, aggidxs_list, aggmaws_list
Beispiel #2
0
def compute_agg_rvecs(rvecs_list, idxs_list, aids_list, maws_list):
    """
    Sums and normalizes all rvecs that belong to the same word and the same
    annotation id

    Example:
        >>> from ibeis.model.hots.smk.smk_speed import *  # NOQA
        >>> from ibeis.model.hots.smk import smk_debug
        >>> words, wx_sublist, aids_list, idxs_list, idx2_vec, maws_list = smk_debug.testdata_nonagg_rvec()
        >>> rvecs_list = compute_nonagg_rvec_listcomp(words, wx_sublist, idxs_list, idx2_vec)

    """
    #assert len(idxs_list) == len(rvecs_list)
    # group members of each word by aid, we will collapse these groups
    grouptup_list = [clustertool.group_indicies(aids) for aids in aids_list]
    # Agg aids
    aggaids_list = [tup[0] for tup in grouptup_list]
    groupxs_list = [tup[1] for tup in grouptup_list]
    # Aggregate vecs that belong to the same aid, for each word
    # (weighted aggregation with multi-assign-weights)
    aggvecs_list = [
        np.vstack([
            smk_core.aggregate_rvecs(rvecs.take(xs, axis=0), maws.take(xs))
            for xs in groupxs
        ]) if len(groupxs) > 0 else np.empty((0, VEC_DIM), dtype=FLOAT_TYPE)
        for rvecs, maws, groupxs in zip(rvecs_list, maws_list, groupxs_list)
    ]
    # Agg idxs
    aggidxs_list = [[idxs.take(xs) for xs in groupxs]
                    for idxs, groupxs in zip(idxs_list, groupxs_list)]
    aggmaws_list = [
        np.array([maws.take(xs).prod() for xs in groupxs])
        for maws, groupxs in zip(maws_list, groupxs_list)
    ]
    return aggvecs_list, aggaids_list, aggidxs_list, aggmaws_list
Beispiel #3
0
def compute_data_gamma_(idx2_daid, wx2_rvecs, wx2_aids, wx2_idf,
                        alpha=3, thresh=0):
    """
    Computes gamma normalization scalar for the database annotations
    Internals step4
    >>> from ibeis.model.hots.smk.smk_index import *  # NOQA
    >>> from ibeis.model.hots.smk import smk_debug
    >>> ibs, annots_df, invindex, wx2_idxs, wx2_idf, wx2_rvecs, wx2_aids = smk_debug.testdata_raw_internals2()
    >>> alpha = ibs.cfg.query_cfg.smk_cfg.alpha
    >>> thresh = ibs.cfg.query_cfg.smk_cfg.thresh
    >>> idx2_daid  = invindex.idx2_daid
    >>> wx2_idf = wx2_idf
    >>> daids      = invindex.daids
    >>> use_cache  = USE_CACHE_GAMMA and False
    >>> daid2_gamma = compute_data_gamma_(idx2_daid, wx2_rvecs, wx2_aids, wx2_idf, daids, use_cache=use_cache)
    """
    if utool.DEBUG2:
        from ibeis.model.hots.smk import smk_debug
        smk_debug.rrr()
        smk_debug.check_wx2(wx2_rvecs=wx2_rvecs, wx2_aids=wx2_aids)
    wx_sublist = pdh.ensure_values(pdh.ensure_index(wx2_rvecs))
    if utool.VERBOSE:
        print('[smk_index] Compute Gamma alpha=%r, thresh=%r: ' % (alpha, thresh))
        mark1, end1_ = utool.log_progress(
            '[smk_index] Gamma group (by word): ', len(wx_sublist),
            flushfreq=100, writefreq=50, with_totaltime=True)
    # Get list of aids and rvecs w.r.t. words
    aids_list = pdh.ensure_values_subset(wx2_aids, wx_sublist)
    rvecs_list1 = pdh.ensure_values_subset(wx2_rvecs, wx_sublist)
    # Group by daids first and then by word index
    daid2_wx2_drvecs = utool.ddict(lambda: utool.ddict(list))
    for wx, aids, rvecs in zip(wx_sublist, aids_list, rvecs_list1):
        group_aids, groupxs = clustertool.group_indicies(aids)
        rvecs_group = clustertool.apply_grouping(rvecs, groupxs)  # 2.9 ms
        for aid, rvecs_ in zip(group_aids, rvecs_group):
            daid2_wx2_drvecs[aid][wx] = rvecs_

    if utool.VERBOSE:
        end1_()

    # For every daid, compute its gamma using pregrouped rvecs
    # Summation over words for each aid
    if utool.VERBOSE:
        mark2, end2_ = utool.log_progress(
            '[smk_index] Gamma Sum (over daid): ', len(daid2_wx2_drvecs),
            flushfreq=100, writefreq=25, with_totaltime=True)
    # Get lists w.r.t daids
    aid_list          = list(daid2_wx2_drvecs.keys())
    # list of mappings from words to rvecs foreach daid
    # [wx2_aidrvecs_1, ..., wx2_aidrvecs_nDaids,]
    _wx2_aidrvecs_list = list(daid2_wx2_drvecs.values())
    _aidwxs_iter    = (list(wx2_aidrvecs.keys()) for wx2_aidrvecs in _wx2_aidrvecs_list)
    aidrvecs_list  = [list(wx2_aidrvecs.values()) for wx2_aidrvecs in _wx2_aidrvecs_list]
    aididf_list = [[wx2_idf[wx] for wx in aidwxs] for aidwxs in _aidwxs_iter]

    #gamma_list = []
    if utool.DEBUG2:
        try:
            for count, (idf_list, rvecs_list) in enumerate(zip(aididf_list, aidrvecs_list)):
                assert len(idf_list) == len(rvecs_list), 'one list for each word'
                #gamma = smk_core.gamma_summation2(rvecs_list, idf_list, alpha, thresh)
        except Exception as ex:
            utool.printex(ex)
            utool.embed()
            raise
    gamma_list = [smk_core.gamma_summation2(rvecs_list, idf_list, alpha, thresh)
                  for idf_list, rvecs_list in zip(aididf_list, aidrvecs_list)]

    if WITH_PANDAS:
        daid2_gamma = pdh.IntSeries(gamma_list, index=aid_list, name='gamma')
    else:
        daid2_gamma = dict(zip(aid_list, gamma_list))
    if utool.VERBOSE:
        end2_()

    return daid2_gamma
Beispiel #4
0
def compute_data_gamma_(idx2_daid,
                        wx2_rvecs,
                        wx2_aids,
                        wx2_idf,
                        alpha=3,
                        thresh=0):
    """
    Computes gamma normalization scalar for the database annotations
    Internals step4
    >>> from ibeis.model.hots.smk.smk_index import *  # NOQA
    >>> from ibeis.model.hots.smk import smk_debug
    >>> ibs, annots_df, invindex, wx2_idxs, wx2_idf, wx2_rvecs, wx2_aids = smk_debug.testdata_raw_internals2()
    >>> alpha = ibs.cfg.query_cfg.smk_cfg.alpha
    >>> thresh = ibs.cfg.query_cfg.smk_cfg.thresh
    >>> idx2_daid  = invindex.idx2_daid
    >>> wx2_idf = wx2_idf
    >>> daids      = invindex.daids
    >>> use_cache  = USE_CACHE_GAMMA and False
    >>> daid2_gamma = compute_data_gamma_(idx2_daid, wx2_rvecs, wx2_aids, wx2_idf, daids, use_cache=use_cache)
    """
    if utool.DEBUG2:
        from ibeis.model.hots.smk import smk_debug
        smk_debug.rrr()
        smk_debug.check_wx2(wx2_rvecs=wx2_rvecs, wx2_aids=wx2_aids)
    wx_sublist = pdh.ensure_values(pdh.ensure_index(wx2_rvecs))
    if utool.VERBOSE:
        print('[smk_index] Compute Gamma alpha=%r, thresh=%r: ' %
              (alpha, thresh))
        mark1, end1_ = utool.log_progress(
            '[smk_index] Gamma group (by word): ',
            len(wx_sublist),
            flushfreq=100,
            writefreq=50,
            with_totaltime=True)
    # Get list of aids and rvecs w.r.t. words
    aids_list = pdh.ensure_values_subset(wx2_aids, wx_sublist)
    rvecs_list1 = pdh.ensure_values_subset(wx2_rvecs, wx_sublist)
    # Group by daids first and then by word index
    daid2_wx2_drvecs = utool.ddict(lambda: utool.ddict(list))
    for wx, aids, rvecs in zip(wx_sublist, aids_list, rvecs_list1):
        group_aids, groupxs = clustertool.group_indicies(aids)
        rvecs_group = clustertool.apply_grouping(rvecs, groupxs)  # 2.9 ms
        for aid, rvecs_ in zip(group_aids, rvecs_group):
            daid2_wx2_drvecs[aid][wx] = rvecs_

    if utool.VERBOSE:
        end1_()

    # For every daid, compute its gamma using pregrouped rvecs
    # Summation over words for each aid
    if utool.VERBOSE:
        mark2, end2_ = utool.log_progress(
            '[smk_index] Gamma Sum (over daid): ',
            len(daid2_wx2_drvecs),
            flushfreq=100,
            writefreq=25,
            with_totaltime=True)
    # Get lists w.r.t daids
    aid_list = list(daid2_wx2_drvecs.keys())
    # list of mappings from words to rvecs foreach daid
    # [wx2_aidrvecs_1, ..., wx2_aidrvecs_nDaids,]
    _wx2_aidrvecs_list = list(daid2_wx2_drvecs.values())
    _aidwxs_iter = (list(wx2_aidrvecs.keys())
                    for wx2_aidrvecs in _wx2_aidrvecs_list)
    aidrvecs_list = [
        list(wx2_aidrvecs.values()) for wx2_aidrvecs in _wx2_aidrvecs_list
    ]
    aididf_list = [[wx2_idf[wx] for wx in aidwxs] for aidwxs in _aidwxs_iter]

    #gamma_list = []
    if utool.DEBUG2:
        try:
            for count, (idf_list, rvecs_list) in enumerate(
                    zip(aididf_list, aidrvecs_list)):
                assert len(idf_list) == len(
                    rvecs_list), 'one list for each word'
                #gamma = smk_core.gamma_summation2(rvecs_list, idf_list, alpha, thresh)
        except Exception as ex:
            utool.printex(ex)
            utool.embed()
            raise
    gamma_list = [
        smk_core.gamma_summation2(rvecs_list, idf_list, alpha, thresh)
        for idf_list, rvecs_list in zip(aididf_list, aidrvecs_list)
    ]

    if WITH_PANDAS:
        daid2_gamma = pdh.IntSeries(gamma_list, index=aid_list, name='gamma')
    else:
        daid2_gamma = dict(zip(aid_list, gamma_list))
    if utool.VERBOSE:
        end2_()

    return daid2_gamma