Beispiel #1
0
    def _add_annotation(
        annotation,
        bbox,
        theta,
        species_name,
        viewpoint,
        interest,
        decrease,
        width,
        height,
        part_type=None,
    ):
        # Transformation matrix
        R = vt.rotation_around_bbox_mat3x3(theta, bbox)
        # Get verticies of the annotation polygon
        verts = vt.verts_from_bbox(bbox, close=True)
        # Rotate and transform vertices
        xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
        trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
        new_verts = np.round(trans_pts).astype(np.int).T.tolist()
        x_points = [pt[0] for pt in new_verts]
        y_points = [pt[1] for pt in new_verts]
        xmin = int(min(x_points) * decrease)
        xmax = int(max(x_points) * decrease)
        ymin = int(min(y_points) * decrease)
        ymax = int(max(y_points) * decrease)
        # Bounds check
        xmin = max(xmin, 0)
        ymin = max(ymin, 0)
        xmax = min(xmax, width - 1)
        ymax = min(ymax, height - 1)
        # Get info
        info = {}

        w_ = xmax - xmin
        h_ = ymax - ymin
        if w_ < min_annot_size:
            return
        if h_ < min_annot_size:
            return

        if viewpoint != -1 and viewpoint is not None:
            info['pose'] = viewpoint

        if interest is not None:
            info['interest'] = '1' if interest else '0'

        if part_type is not None:
            species_name = '%s+%s' % (
                species_name,
                part_type,
            )

        area = w_ * h_
        logger.info('\t\tAdding %r with area %0.04f pixels^2' % (
            species_name,
            area,
        ))

        annotation.add_object(species_name, (xmax, xmin, ymax, ymin), **info)
def align(bbox, theta, width, height):
    # Transformation matrix
    R = vt.rotation_around_bbox_mat3x3(theta, bbox)
    # Get verticies of the annotation polygon
    verts = vt.verts_from_bbox(bbox, close=True)
    # Rotate and transform vertices
    xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
    trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
    new_verts = np.round(trans_pts).astype(np.int).T.tolist()
    x_points = [pt[0] for pt in new_verts]
    y_points = [pt[1] for pt in new_verts]
    xmin = int(min(x_points))
    xmax = int(max(x_points))
    ymin = int(min(y_points))
    ymax = int(max(y_points))
    # Bounds check
    xmin = max(xmin, 0)
    ymin = max(ymin, 0)
    xmax = min(xmax, width - 1)
    ymax = min(ymax, height - 1)
    xtl = xmin
    ytl = ymin
    w = xmax - xmin
    h = ymax - ymin
    return (
        xtl,
        ytl,
        w,
        h,
    )
def get_part_rotated_verts(ibs, part_rowid_list):
    r"""
    Returns:
        rotated_vert_list (list): verticies after rotation by theta.

    RESTful:
        Method: GET
        URL:    /api/part/vert/rotated/
    """
    import vtool as vt

    vert_list = ibs.get_part_verts(part_rowid_list)
    theta_list = ibs.get_part_thetas(part_rowid_list)
    # Convex bounding boxes for verticies
    bbox_list = vt.geometry.bboxes_from_vert_list(vert_list)
    rot_list = [
        vt.rotation_around_bbox_mat3x3(theta, bbox)
        for theta, bbox in zip(theta_list, bbox_list)
    ]
    rotated_vert_list = [
        vt.transform_points_with_homography(rot,
                                            np.array(verts).T).T.tolist()
        for rot, verts in zip(rot_list, vert_list)
    ]
    # vert_list = [eval(vertstr, {}, {}) for vertstr in vertstr_list]
    return rotated_vert_list
Beispiel #4
0
    def _add_annotation_or_part(
        image_index,
        annot_index,
        annot_uuid,
        bbox,
        theta,
        species_name,
        viewpoint,
        interest,
        annot_name,
        decrease,
        width,
        height,
        individuals,
        part_index=None,
        part_uuid=None,
    ):
        is_part = part_index is not None

        R = vt.rotation_around_bbox_mat3x3(theta, bbox)
        verts = vt.verts_from_bbox(bbox, close=True)
        xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
        trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
        new_verts = np.round(trans_pts).astype(np.int).T.tolist()

        x_points = [int(np.around(pt[0] * decrease)) for pt in new_verts]
        y_points = [int(np.around(pt[1] * decrease)) for pt in new_verts]
        segmentation = ut.flatten(list(zip(x_points, y_points)))

        xmin = max(min(x_points), 0)
        ymin = max(min(y_points), 0)
        xmax = min(max(x_points), width - 1)
        ymax = min(max(y_points), height - 1)

        w = xmax - xmin
        h = ymax - ymin
        area = w * h

        xtl_, ytl_, w_, h_ = bbox
        xtl_ *= decrease
        ytl_ *= decrease
        w_ *= decrease
        h_ *= decrease

        annot_part = {
            'bbox': [xtl_, ytl_, w_, h_],
            'theta': theta,
            'viewpoint': viewpoint,
            'segmentation': [segmentation],
            'segmentation_bbox': [xmin, ymin, w, h],
            'area': area,
            'iscrowd': 0,
            'id': part_index if is_part else annot_index,
            'image_id': image_index,
            'category_id': category_dict[species_name],
            'uuid': str(part_uuid if is_part else annot_uuid),
            'individual_ids': individuals,
        }
        if is_part:
            annot_part['annot_id'] = annot_index
        else:
            annot_part['isinterest'] = int(interest)
            annot_part['name'] = annot_name

        return annot_part, area
Beispiel #5
0
def export_to_coco(ibs,
                   species_list,
                   species_mapping={},
                   target_size=2400,
                   use_maximum_linear_dimension=True,
                   use_existing_train_test=True,
                   gid_list=None,
                   include_reviews=False,
                   require_named=True,
                   output_images=True,
                   **kwargs):
    """Create training COCO dataset for training models."""
    from datetime import date
    import datetime
    import random
    import json

    print('Received species_mapping = %r' % (species_mapping, ))
    print('Using species_list = %r' % (species_list, ))

    current_year = int(date.today().year)
    datadir = abspath(join(ibs.get_cachedir(), 'coco'))
    annotdir = join(datadir, 'annotations')
    imagedir = join(datadir, 'images')
    image_dir_dict = {
        'train': join(imagedir, 'train%s' % (current_year, )),
        'val': join(imagedir, 'val%s' % (current_year, )),
        'test': join(imagedir, 'test%s' % (current_year, )),
    }

    ut.delete(datadir)
    ut.ensuredir(datadir)
    ut.ensuredir(annotdir)
    ut.ensuredir(imagedir)
    for dataset in image_dir_dict:
        ut.ensuredir(image_dir_dict[dataset])

    info = {
        'description': 'Wild Me %s Dataset' % (ibs.dbname, ),
        # 'url'                 : 'http://www.greatgrevysrally.com',
        'url': 'http://www.wildme.org',
        'version': '1.0',
        'year': current_year,
        'contributor': 'Wild Me, Jason Parham <*****@*****.**>',
        'date_created': datetime.datetime.utcnow().isoformat(' '),
        'ibeis_database_name': ibs.get_db_name(),
        'ibeis_database_uuid': str(ibs.get_db_init_uuid()),
    }

    licenses = [
        {
            'url': 'http://creativecommons.org/licenses/by-nc-nd/2.0/',
            'id': 3,
            'name': 'Attribution-NonCommercial-NoDerivs License',
        },
    ]

    assert len(species_list) == len(
        set(species_list)), 'Cannot have duplicate species in species_list'
    category_dict = {}
    categories = []
    for index, species in enumerate(sorted(species_list)):

        species = species_mapping.get(species, species)

        categories.append({
            'id': index,
            'name': species,
            'supercategory': 'animal',
        })
        category_dict[species] = index

    output_dict = {}
    for dataset in ['train', 'val', 'test']:
        output_dict[dataset] = {
            'info': info,
            'licenses': licenses,
            'categories': categories,
            'images': [],
            'annotations': [],
        }

    # Get all gids and process them
    if gid_list is None:
        aid_list = ibs.get_valid_aids()
        species_list_ = ibs.get_annot_species(aid_list)
        flag_list = [
            species_mapping.get(species_, species_) in species_list
            for species_ in species_list_
        ]
        aid_list = ut.compress(aid_list, flag_list)
        if require_named:
            nid_list = ibs.get_annot_nids(aid_list)
            flag_list = [nid >= 0 for nid in nid_list]
            aid_list = ut.compress(aid_list, flag_list)
        gid_list = sorted(list(set(ibs.get_annot_gids(aid_list))))

    # Make a preliminary train / test split as imagesets or use the existing ones
    if not use_existing_train_test:
        ibs.imageset_train_test_split(**kwargs)

    train_gid_set = set(general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs))
    test_gid_set = set(general_get_imageset_gids(ibs, 'TEST_SET', **kwargs))

    image_index = 1
    annot_index = 1

    aid_dict = {}

    print('Exporting %d images' % (len(gid_list), ))
    for gid in gid_list:

        if gid in test_gid_set:
            dataset = 'test'
        elif gid in train_gid_set:
            state = random.uniform(0.0, 1.0)
            if state <= 0.75:
                dataset = 'train'
            else:
                dataset = 'val'
        else:
            raise AssertionError(
                'All gids must be either in the TRAIN_SET or TEST_SET imagesets'
            )

        width, height = ibs.get_image_sizes(gid)
        if target_size is None:
            decrease = 1.0
        else:
            condition = width > height if use_maximum_linear_dimension else width < height
            if condition:
                ratio = height / width
                decrease = target_size / width
                width = target_size
                height = int(target_size * ratio)
            else:
                ratio = width / height
                decrease = target_size / height
                height = target_size
                width = int(target_size * ratio)

        image_path = ibs.get_image_paths(gid)
        image_filename = '%012d.jpg' % (image_index, )
        image_filepath = join(image_dir_dict[dataset], image_filename)

        if output_images:
            _image = ibs.get_images(gid)
            _image = vt.resize(_image, (width, height))
            vt.imwrite(image_filepath, _image)

        output_dict[dataset]['images'].append({
            'license':
            3,
            # 'file_name'        : image_filename,
            'file_name':
            basename(ibs.get_image_uris_original(gid)),
            'coco_url':
            None,
            'height':
            height,
            'width':
            width,
            'date_captured':
            ibs.get_image_datetime_str(gid).replace('/', '-'),
            'flickr_url':
            None,
            'id':
            image_index,
            'ibeis_image_uuid':
            str(ibs.get_image_uuids(gid)),
        })

        print('Copying:\n%r\n%r\n%r\n\n' % (
            image_path,
            image_filepath,
            (width, height),
        ))

        aid_list = ibs.get_image_aids(gid)
        bbox_list = ibs.get_annot_bboxes(aid_list)
        theta_list = ibs.get_annot_thetas(aid_list)
        species_name_list = ibs.get_annot_species_texts(aid_list)
        viewpoint_list = ibs.get_annot_viewpoints(aid_list)
        nid_list = ibs.get_annot_nids(aid_list)

        seen = 0
        zipped = zip(aid_list, bbox_list, theta_list, species_name_list,
                     viewpoint_list, nid_list)
        for aid, bbox, theta, species_name, viewpoint, nid in zipped:
            species_name = species_mapping.get(species_name, species_name)

            if species_name is None:
                continue

            if species_name not in species_list:
                continue

            if require_named and nid < 0:
                continue

            # Transformation matrix
            R = vt.rotation_around_bbox_mat3x3(theta, bbox)
            verts = vt.verts_from_bbox(bbox, close=True)
            xyz_pts = vt.add_homogenous_coordinate(np.array(verts).T)
            trans_pts = vt.remove_homogenous_coordinate(R.dot(xyz_pts))
            new_verts = np.round(trans_pts).astype(np.int).T.tolist()

            x_points = [int(np.around(pt[0] * decrease)) for pt in new_verts]
            y_points = [int(np.around(pt[1] * decrease)) for pt in new_verts]
            segmentation = ut.flatten(list(zip(x_points, y_points)))

            xmin = max(min(x_points), 0)
            ymin = max(min(y_points), 0)
            xmax = min(max(x_points), width - 1)
            ymax = min(max(y_points), height - 1)

            w = xmax - xmin
            h = ymax - ymin
            area = w * h

            # individuals = ibs.get_name_aids(ibs.get_annot_nids(aid))
            reviews = ibs.get_review_rowids_from_single([aid])[0]
            user_list = ibs.get_review_identity(reviews)
            aid_tuple_list = ibs.get_review_aid_tuple(reviews)
            decision_list = ibs.get_review_decision_str(reviews)

            ids = []
            decisions = []
            zipped = zip(user_list, aid_tuple_list, decision_list)
            for user, aid_tuple, decision in zipped:
                if 'user:web' not in user:
                    continue
                match = list(set(aid_tuple) - set([aid]))
                assert len(match) == 1
                ids.append(match[0])
                decisions.append(decision.lower())

            xtl_, ytl_, w_, h_ = bbox
            xtl_ *= decrease
            ytl_ *= decrease
            w_ *= decrease
            h_ *= decrease

            annot = {
                'bbox': [xtl_, ytl_, w_, h_],
                'theta': theta,
                'viewpoint': viewpoint,
                'segmentation': [segmentation],
                'segmentation_bbox': [xmin, ymin, w, h],
                'area': area,
                'iscrowd': 0,
                'image_id': image_index,
                'category_id': category_dict[species_name],
                'id': annot_index,
                'ibeis_annot_uuid': str(ibs.get_annot_uuids(aid)),
                'ibeis_annot_name': str(ibs.get_annot_name_texts(aid)),
                # 'individual_ids'    : individuals,
            }
            if include_reviews:
                annot['review_ids'] = list(zip(ids, decisions))

            output_dict[dataset]['annotations'].append(annot)
            seen += 1

            print('\t\tAdding %r with area %0.04f pixels^2' % (
                species_name,
                area,
            ))

            aid_dict[aid] = annot_index
            annot_index += 1

        # assert seen > 0
        image_index += 1

    for dataset in output_dict:
        annots = output_dict[dataset]['annotations']
        for index in range(len(annots)):
            annot = annots[index]

            # Map internal aids to external annot index
            # individual_ids = annot['individual_ids']
            # individual_ids_ = []
            # for individual_id in individual_ids:
            #     if individual_id not in aid_dict:
            #         continue
            #     individual_id_ = aid_dict[individual_id]
            #     individual_ids_.append(individual_id_)
            # annot['individual_ids'] = individual_ids_

            # Map reviews
            if include_reviews:
                review_ids = annot['review_ids']
                review_ids_ = []
                for review in review_ids:
                    review_id, review_decision = review
                    if review_id not in aid_dict:
                        continue
                    review_id_ = aid_dict[review_id]
                    review_ = (
                        review_id_,
                        review_decision,
                    )
                    review_ids_.append(review_)
                annot['review_ids'] = review_ids_

            # Store
            output_dict[dataset]['annotations'][index] = annot

    for dataset in output_dict:
        json_filename = 'instances_%s%s.json' % (
            dataset,
            current_year,
        )
        json_filepath = join(annotdir, json_filename)

        with open(json_filepath, 'w') as json_file:
            json.dump(output_dict[dataset], json_file)

    print('...completed')
    return datadir