Beispiel #1
0
def extract32(expr, args, kwargs, context):
    sub, index = args
    ret_type = kwargs['type']
    # Get length and specific element
    if sub.location == "memory":
        lengetter = LLLnode.from_list(['mload', '_sub'], typ=BaseType('int128'))
        elementgetter = _memory_element_getter
    elif sub.location == "storage":
        lengetter = LLLnode.from_list(['sload', ['sha3_32', '_sub']], typ=BaseType('int128'))
        elementgetter = _storage_element_getter
    # TODO: unclosed if/elif clause.  Undefined behavior if `sub.location`
    # isn't one of `memory`/`storage`

    # Special case: index known to be a multiple of 32
    if isinstance(index.value, int) and not index.value % 32:
        o = LLLnode.from_list(
            [
                'with', '_sub', sub,
                elementgetter(['div', ['clamp', 0, index, ['sub', lengetter, 32]], 32])
            ],
            typ=BaseType(ret_type),
            annotation='extracting 32 bytes',
        )
    # General case
    else:
        o = LLLnode.from_list([
            'with', '_sub', sub, [
                'with', '_len', lengetter, [
                    'with', '_index', ['clamp', 0, index, ['sub', '_len', 32]], [
                        'with', '_mi32', ['mod', '_index', 32], [
                            'with', '_di32', ['div', '_index', 32],
                            [
                                'if',
                                '_mi32',
                                [
                                    'add',
                                    ['mul', elementgetter('_di32'), ['exp', 256, '_mi32']],
                                    [
                                        'div',
                                        elementgetter(['add', '_di32', 1]),
                                        ['exp', 256, ['sub', 32, '_mi32']],
                                    ],
                                ],
                                elementgetter('_di32'),
                            ],
                        ],
                    ],
                ],
            ],
        ], typ=BaseType(ret_type), pos=getpos(expr), annotation='extracting 32 bytes')
    if ret_type == 'int128':
        return LLLnode.from_list(
            ['clamp', ['mload', MemoryPositions.MINNUM], o, ['mload', MemoryPositions.MAXNUM]],
            typ=BaseType('int128'),
            pos=getpos(expr),
        )
    elif ret_type == 'address':
        return LLLnode.from_list(
            ['uclamplt', o, ['mload', MemoryPositions.ADDRSIZE]],
            typ=BaseType(ret_type),
            pos=getpos(expr),
        )
    else:
        return o
Beispiel #2
0
def add_variable_offset(parent, key, pos):
    typ, location = parent.typ, parent.location
    if isinstance(typ, (StructType, TupleType)):
        if isinstance(typ, StructType):
            if not isinstance(key, str):
                raise TypeMismatchException(
                    "Expecting a member variable access; cannot access element %r"
                    % key, pos)
            if key not in typ.members:
                raise TypeMismatchException(
                    "Object does not have member variable %s" % key, pos)
            subtype = typ.members[key]
            attrs = sorted(typ.members.keys())

            if key not in attrs:
                raise TypeMismatchException(
                    "Member %s not found. Only the following available: %s" %
                    (key, " ".join(attrs)), pos)
            index = attrs.index(key)
            annotation = key
        else:
            if not isinstance(key, int):
                raise TypeMismatchException(
                    "Expecting a static index; cannot access element %r" % key,
                    pos)
            attrs = list(range(len(typ.members)))
            index = key
            annotation = None
        if location == 'storage':
            return LLLnode.from_list([
                'add', ['sha3_32', parent],
                LLLnode.from_list(index, annotation=annotation)
            ],
                                     typ=subtype,
                                     location='storage')
        elif location == 'storage_prehashed':
            return LLLnode.from_list([
                'add', parent,
                LLLnode.from_list(index, annotation=annotation)
            ],
                                     typ=subtype,
                                     location='storage')
        elif location == 'memory':
            offset = 0
            for i in range(index):
                offset += 32 * get_size_of_type(typ.members[attrs[i]])
            return LLLnode.from_list(['add', offset, parent],
                                     typ=typ.members[key],
                                     location='memory',
                                     annotation=annotation)
        else:
            raise TypeMismatchException(
                "Not expecting a member variable access")

    elif isinstance(typ, MappingType):

        if isinstance(key.typ, ByteArrayType):
            if not isinstance(typ.keytype, ByteArrayType) or (
                    typ.keytype.maxlen < key.typ.maxlen):
                raise TypeMismatchException(
                    'Mapping keys of bytes cannot be cast, use exact same bytes type of: %s'
                    % str(typ.keytype), pos)
            subtype = typ.valuetype
            if len(key.args[0].args) >= 3:  # handle bytes literal.
                sub = LLLnode.from_list([
                    'seq', key,
                    [
                        'sha3', ['add', key.args[0].args[-1], 32],
                        ['mload', key.args[0].args[-1]]
                    ]
                ])
            else:
                sub = LLLnode.from_list([
                    'sha3', ['add', key.args[0].value, 32],
                    ['mload', key.args[0].value]
                ])
        else:
            subtype = typ.valuetype
            sub = base_type_conversion(key, key.typ, typ.keytype, pos=pos)

        if location == 'storage':
            return LLLnode.from_list(['sha3_64', parent, sub],
                                     typ=subtype,
                                     location='storage')
        elif location == 'memory':
            raise TypeMismatchException(
                "Can only have fixed-side arrays in memory, not mappings", pos)

    elif isinstance(typ, ListType):

        subtype = typ.subtype
        sub = [
            'uclamplt',
            base_type_conversion(key, key.typ, BaseType('int128'), pos=pos),
            typ.count
        ]

        if location == 'storage':
            return LLLnode.from_list(['add', ['sha3_32', parent], sub],
                                     typ=subtype,
                                     location='storage')
        elif location == 'storage_prehashed':
            return LLLnode.from_list(['add', parent, sub],
                                     typ=subtype,
                                     location='storage')
        elif location == 'memory':
            offset = 32 * get_size_of_type(subtype)
            return LLLnode.from_list(['add', ['mul', offset, sub], parent],
                                     typ=subtype,
                                     location='memory')
        else:
            raise TypeMismatchException("Not expecting an array access ", pos)
    else:
        raise TypeMismatchException(
            "Cannot access the child of a constant variable! %r" % typ, pos)
Beispiel #3
0
def raw_log(expr, args, kwargs, context):
    if not isinstance(args[0], ast.List) or len(args[0].elts) > 4:
        raise StructureException(
            "Expecting a list of 0-4 topics as first argument", args[0])
    topics = []
    for elt in args[0].elts:
        arg = Expr.parse_value_expr(elt, context)
        if not is_base_type(arg.typ, 'bytes32'):
            raise TypeMismatchException(
                "Expecting a bytes32 argument as topic", elt)
        topics.append(arg)
    if args[1].typ == BaseType('bytes32'):
        placeholder = context.new_placeholder(BaseType('bytes32'))
        return LLLnode.from_list([
            'seq', ['mstore', placeholder,
                    unwrap_location(args[1])],
            [
                "log" + str(len(topics)),
                placeholder,
                32,
            ] + topics
        ],
                                 typ=None,
                                 pos=getpos(expr))
    if args[1].location == "memory":
        return LLLnode.from_list([
            "with", "_arr", args[1],
            [
                "log" + str(len(topics)),
                ["add", "_arr", 32],
                ["mload", "_arr"],
            ] + topics
        ],
                                 typ=None,
                                 pos=getpos(expr))
    placeholder = context.new_placeholder(args[1].typ)
    placeholder_node = LLLnode.from_list(placeholder,
                                         typ=args[1].typ,
                                         location='memory')
    copier = make_byte_array_copier(
        placeholder_node,
        LLLnode.from_list('_sub', typ=args[1].typ, location=args[1].location),
        pos=getpos(expr),
    )
    return LLLnode.from_list(
        [
            "with",
            "_sub",
            args[1],
            [
                "seq", copier,
                [
                    "log" + str(len(topics)),
                    ["add", placeholder_node, 32],
                    ["mload", placeholder_node],
                ] + topics
            ],
        ],
        typ=None,
        pos=getpos(expr),
    )
Beispiel #4
0
 def attribute(self):
     # x.balance: balance of address x
     if self.expr.attr == 'balance':
         addr = Expr.parse_value_expr(self.expr.value, self.context)
         if not is_base_type(addr.typ, 'address'):
             raise TypeMismatchException(
                 "Type mismatch: balance keyword expects an address as input",
                 self.expr)
         return LLLnode.from_list(
             ['balance', addr],
             typ=BaseType('uint256', {'wei': 1}),
             location=None,
             pos=getpos(self.expr),
         )
     # x.codesize: codesize of address x
     elif self.expr.attr == 'codesize' or self.expr.attr == 'is_contract':
         addr = Expr.parse_value_expr(self.expr.value, self.context)
         if not is_base_type(addr.typ, 'address'):
             raise TypeMismatchException(
                 "Type mismatch: codesize keyword expects an address as input",
                 self.expr,
             )
         if self.expr.attr == 'codesize':
             eval_code = ['extcodesize', addr]
             output_type = 'int128'
         else:
             eval_code = ['gt', ['extcodesize', addr], 0]
             output_type = 'bool'
         return LLLnode.from_list(
             eval_code,
             typ=BaseType(output_type),
             location=None,
             pos=getpos(self.expr),
         )
     # self.x: global attribute
     elif isinstance(self.expr.value,
                     ast.Name) and self.expr.value.id == "self":
         if self.expr.attr not in self.context.globals:
             raise VariableDeclarationException(
                 "Persistent variable undeclared: " + self.expr.attr,
                 self.expr,
             )
         var = self.context.globals[self.expr.attr]
         return LLLnode.from_list(
             var.pos,
             typ=var.typ,
             location='storage',
             pos=getpos(self.expr),
             annotation='self.' + self.expr.attr,
         )
     # Reserved keywords
     elif isinstance(
             self.expr.value,
             ast.Name) and self.expr.value.id in ENVIRONMENT_VARIABLES:
         key = self.expr.value.id + "." + self.expr.attr
         if key == "msg.sender":
             if self.context.is_private:
                 raise ParserException(
                     "msg.sender not allowed in private functions.",
                     self.expr)
             return LLLnode.from_list(['caller'],
                                      typ='address',
                                      pos=getpos(self.expr))
         elif key == "msg.value":
             if not self.context.is_payable:
                 raise NonPayableViolationException(
                     "Cannot use msg.value in a non-payable function",
                     self.expr,
                 )
             return LLLnode.from_list(
                 ['callvalue'],
                 typ=BaseType('uint256', {'wei': 1}),
                 pos=getpos(self.expr),
             )
         elif key == "msg.gas":
             return LLLnode.from_list(
                 ['gas'],
                 typ='uint256',
                 pos=getpos(self.expr),
             )
         elif key == "block.difficulty":
             return LLLnode.from_list(
                 ['difficulty'],
                 typ='uint256',
                 pos=getpos(self.expr),
             )
         elif key == "block.timestamp":
             return LLLnode.from_list(
                 ['timestamp'],
                 typ=BaseType('uint256', {'sec': 1}, True),
                 pos=getpos(self.expr),
             )
         elif key == "block.coinbase":
             return LLLnode.from_list(['coinbase'],
                                      typ='address',
                                      pos=getpos(self.expr))
         elif key == "block.number":
             return LLLnode.from_list(['number'],
                                      typ='uint256',
                                      pos=getpos(self.expr))
         elif key == "block.prevhash":
             return LLLnode.from_list(
                 ['blockhash', ['sub', 'number', 1]],
                 typ='bytes32',
                 pos=getpos(self.expr),
             )
         elif key == "tx.origin":
             return LLLnode.from_list(['origin'],
                                      typ='address',
                                      pos=getpos(self.expr))
         elif key == "chain.id":
             return LLLnode.from_list(['chainid'],
                                      typ='uint256',
                                      pos=getpos(self.expr))
         else:
             raise ParserException("Unsupported keyword: " + key, self.expr)
     # Other variables
     else:
         sub = Expr.parse_variable_location(self.expr.value, self.context)
         # contract type
         if isinstance(sub.typ, ContractType):
             return sub
         if not isinstance(sub.typ, StructType):
             raise TypeMismatchException(
                 "Type mismatch: member variable access not expected",
                 self.expr.value,
             )
         attrs = list(sub.typ.members.keys())
         if self.expr.attr not in attrs:
             raise TypeMismatchException(
                 f"Member {self.expr.attr} not found. Only the following available: "
                 f"{' '.join(attrs)}",
                 self.expr,
             )
         return add_variable_offset(sub,
                                    self.expr.attr,
                                    pos=getpos(self.expr))
Beispiel #5
0
    def build_in_comparator(self):
        left = Expr(self.expr.left, self.context).lll_node
        right = Expr(self.expr.comparators[0], self.context).lll_node

        if left.typ != right.typ.subtype:
            raise TypeMismatchException(
                f"{left.typ} cannot be in a list of {right.typ.subtype}",
                self.expr,
            )

        result_placeholder = self.context.new_placeholder(BaseType('bool'))
        setter = []

        # Load nth item from list in memory.
        if right.value == 'multi':
            # Copy literal to memory to be compared.
            tmp_list = LLLnode.from_list(obj=self.context.new_placeholder(
                ListType(right.typ.subtype, right.typ.count)),
                                         typ=ListType(right.typ.subtype,
                                                      right.typ.count),
                                         location='memory')
            setter = make_setter(tmp_list,
                                 right,
                                 'memory',
                                 pos=getpos(self.expr))
            load_i_from_list = [
                'mload',
                [
                    'add', tmp_list,
                    ['mul', 32, ['mload', MemoryPositions.FREE_LOOP_INDEX]]
                ],
            ]
        elif right.location == "storage":
            load_i_from_list = [
                'sload',
                [
                    'add', ['sha3_32', right],
                    ['mload', MemoryPositions.FREE_LOOP_INDEX]
                ],
            ]
        else:
            load_i_from_list = [
                'mload',
                [
                    'add', right,
                    ['mul', 32, ['mload', MemoryPositions.FREE_LOOP_INDEX]]
                ],
            ]

        # Condition repeat loop has to break on.
        break_loop_condition = [
            'if',
            ['eq', unwrap_location(left), load_i_from_list],
            [
                'seq',
                ['mstore', '_result', 1],  # store true.
                'break'
            ]
        ]

        # Repeat loop to loop-compare each item in the list.
        for_loop_sequence = [['mstore', result_placeholder, 0],
                             [
                                 'with', '_result', result_placeholder,
                                 [
                                     'repeat',
                                     MemoryPositions.FREE_LOOP_INDEX,
                                     0,
                                     right.typ.count,
                                     break_loop_condition,
                                 ]
                             ], ['mload', result_placeholder]]

        # Save list to memory, so one can iterate over it,
        # used when literal was created with tmp_list.
        if setter:
            compare_sequence = ['seq', setter] + for_loop_sequence
        else:
            compare_sequence = ['seq'] + for_loop_sequence

        # Compare the result of the repeat loop to 1, to know if a match was found.
        o = LLLnode.from_list(['eq', 1, compare_sequence],
                              typ='bool',
                              annotation="in comporator")

        return o
Beispiel #6
0
def as_unitless_number(expr, args, kwargs, context):
    return LLLnode(value=args[0].value, args=args[0].args, typ=BaseType(args[0].typ.typ, {}), pos=getpos(expr))
Beispiel #7
0
 def _is_valid_contract_assign(self):
     if self.expr.args and len(self.expr.args) == 1:
         arg_lll = Expr(self.expr.args[0], self.context).lll_node
         if arg_lll.typ == BaseType('address'):
             return True, arg_lll
     return False, None
Beispiel #8
0
def pack_args_by_32(holder,
                    maxlen,
                    arg,
                    typ,
                    context,
                    placeholder,
                    dynamic_offset_counter=None,
                    datamem_start=None):
    """
    Copy necessary variables to pre-allocated memory section.

    :param holder: Complete holder for all args
    :param maxlen: Total length in bytes of the full arg section (static + dynamic).
    :param arg: Current arg to pack
    :param context: Context of arg
    :param placeholder: Static placeholder for static argument part.
    :param dynamic_offset_counter: position counter stored in static args.
    :param dynamic_placeholder: pointer to current position in memory to write dynamic values to.
    :param datamem_start: position where the whole datemem section starts.
    """

    if isinstance(typ, BaseType):
        value = parse_expr(arg, context)
        value = base_type_conversion(value, value.typ, typ)
        holder.append(
            LLLnode.from_list(['mstore', placeholder, value],
                              typ=typ,
                              location='memory'))
    elif isinstance(typ, ByteArrayType):
        bytez = b''

        source_expr = Expr(arg, context)
        if isinstance(arg, ast.Str):
            if len(arg.s) > typ.maxlen:
                raise TypeMismatchException(
                    "Data input bytes are to big: %r %r" % (len(arg.s), typ))
            for c in arg.s:
                if ord(c) >= 256:
                    raise InvalidLiteralException(
                        "Cannot insert special character %r into byte array" %
                        c)
                bytez += bytes([ord(c)])

            holder.append(source_expr.lll_node)

        # Set static offset, in arg slot.
        holder.append(
            LLLnode.from_list(
                ['mstore', placeholder, ['mload', dynamic_offset_counter]]))
        # Get the biginning to write the ByteArray to.
        dest_placeholder = LLLnode.from_list(
            ['add', datamem_start, ['mload', dynamic_offset_counter]],
            typ=typ,
            location='memory',
            annotation="pack_args_by_32:dest_placeholder")
        copier = make_byte_array_copier(dest_placeholder, source_expr.lll_node)
        holder.append(copier)
        # Increment offset counter.
        increment_counter = LLLnode.from_list([
            'mstore', dynamic_offset_counter,
            [
                'add',
                [
                    'add', ['mload', dynamic_offset_counter],
                    ['ceil32', ['mload', dest_placeholder]]
                ], 32
            ]
        ])
        holder.append(increment_counter)
    elif isinstance(typ, ListType):
        maxlen += (typ.count - 1) * 32
        typ = typ.subtype

        def check_list_type_match(provided):  # Check list types match.
            if provided != typ:
                raise TypeMismatchException(
                    "Log list type '%s' does not match provided, expected '%s'"
                    % (provided, typ))

        # List from storage
        if isinstance(arg, ast.Attribute) and arg.value.id == 'self':
            stor_list = context.globals[arg.attr]
            check_list_type_match(stor_list.typ.subtype)
            size = stor_list.typ.count
            for offset in range(0, size):
                arg2 = LLLnode.from_list([
                    'sload',
                    ['add', ['sha3_32', Expr(arg, context).lll_node], offset]
                ],
                                         typ=typ)
                holder, maxlen = pack_args_by_32(
                    holder, maxlen, arg2, typ, context,
                    context.new_placeholder(BaseType(32)))
        # List from variable.
        elif isinstance(arg, ast.Name):
            size = context.vars[arg.id].size
            pos = context.vars[arg.id].pos
            check_list_type_match(context.vars[arg.id].typ.subtype)
            for i in range(0, size):
                offset = 32 * i
                arg2 = LLLnode.from_list(pos + offset,
                                         typ=typ,
                                         location='memory')
                holder, maxlen = pack_args_by_32(
                    holder, maxlen, arg2, typ, context,
                    context.new_placeholder(BaseType(32)))
        # is list literal.
        else:
            holder, maxlen = pack_args_by_32(holder, maxlen, arg.elts[0], typ,
                                             context, placeholder)
            for j, arg2 in enumerate(arg.elts[1:]):
                holder, maxlen = pack_args_by_32(
                    holder, maxlen, arg2, typ, context,
                    context.new_placeholder(BaseType(32)))

    return holder, maxlen
Beispiel #9
0
    def add_globals_and_events(self, item):
        item_attributes = {"public": False}

        # Handle constants.
        if isinstance(item.annotation,
                      ast.Call) and item.annotation.func.id == "constant":
            self.add_constant(item)
            return

        # Handle events.
        if not (isinstance(item.annotation, ast.Call)
                and item.annotation.func.id == "event"):
            item_name, item_attributes = self.get_item_name_and_attributes(
                item, item_attributes)
            if not all([
                    attr in valid_global_keywords
                    for attr in item_attributes.keys()
            ]):
                raise StructureException(
                    'Invalid global keyword used: %s' % item_attributes, item)

        if item.value is not None:
            raise StructureException(
                'May not assign value whilst defining type', item)
        elif isinstance(item.annotation,
                        ast.Call) and item.annotation.func.id == "event":
            if self._globals or len(self._defs):
                raise EventDeclarationException(
                    "Events must all come before global declarations and function definitions",
                    item)
            self._events.append(item)
        elif not isinstance(item.target, ast.Name):
            raise StructureException(
                "Can only assign type to variable in top-level statement",
                item)

        # Is this a custom unit definition.
        elif item.target.id == 'units':
            if not self._custom_units:
                if not isinstance(item.annotation, ast.Dict):
                    raise VariableDeclarationException(
                        "Define custom units using units: { }.", item.target)
                for key, value in zip(item.annotation.keys,
                                      item.annotation.values):
                    if not isinstance(value, ast.Str):
                        raise VariableDeclarationException(
                            "Custom unit description must be a valid string",
                            value)
                    if not isinstance(key, ast.Name):
                        raise VariableDeclarationException(
                            "Custom unit name must be a valid string", key)
                    if key.id in self._custom_units:
                        raise VariableDeclarationException(
                            "Custom unit name may only be used once", key)
                    if not is_varname_valid(key.id,
                                            custom_units=self._custom_units):
                        raise VariableDeclarationException(
                            "Custom unit may not be a reserved keyword", key)
                    self._custom_units.append(key.id)
            else:
                raise VariableDeclarationException(
                    "Custom units can only be defined once", item.target)

        # Check if variable name is valid.
        elif not self.is_valid_varname(item.target.id, item):
            pass

        elif len(self._defs):
            raise StructureException(
                "Global variables must all come before function definitions",
                item)

        # If the type declaration is of the form public(<type here>), then proceed with
        # the underlying type but also add getters
        elif isinstance(item.annotation,
                        ast.Call) and item.annotation.func.id == "address":
            if item.annotation.args[0].id not in premade_contracts:
                raise VariableDeclarationException(
                    "Unsupported premade contract declaration",
                    item.annotation.args[0])
            premade_contract = premade_contracts[item.annotation.args[0].id]
            self._contracts[item.target.id] = self.add_contract(
                premade_contract.body)
            self._globals[item.target.id] = VariableRecord(
                item.target.id, len(self._globals), BaseType('address'), True)

        elif item_name in self._contracts:
            self._globals[item.target.id] = ContractRecord(
                item.target.id, len(self._globals), ContractType(item_name),
                True)
            if item_attributes["public"]:
                typ = ContractType(item_name)
                for getter in self.mk_getter(item.target.id, typ):
                    self._getters.append(
                        self.parse_line('\n' * (item.lineno - 1) + getter))
                    self._getters[-1].pos = getpos(item)

        elif isinstance(item.annotation,
                        ast.Call) and item.annotation.func.id == "public":
            if isinstance(item.annotation.args[0],
                          ast.Name) and item_name in self._contracts:
                typ = ContractType(item_name)
            else:
                typ = parse_type(item.annotation.args[0],
                                 'storage',
                                 custom_units=self._custom_units)
            self._globals[item.target.id] = VariableRecord(
                item.target.id, len(self._globals), typ, True)
            # Adding getters here
            for getter in self.mk_getter(item.target.id, typ):
                self._getters.append(
                    self.parse_line('\n' * (item.lineno - 1) + getter))
                self._getters[-1].pos = getpos(item)

        else:
            self._globals[item.target.id] = VariableRecord(
                item.target.id, len(self._globals),
                parse_type(item.annotation,
                           'storage',
                           custom_units=self._custom_units), True)
Beispiel #10
0
def get_length(arg):
    if arg.location == "memory":
        return LLLnode.from_list(["mload", arg], typ=BaseType("uint256"))
    elif arg.location == "storage":
        return LLLnode.from_list(["sload", ["sha3_32", arg]],
                                 typ=BaseType("uint256"))
Beispiel #11
0
def add_globals_and_events(_contracts, _defs, _events, _getters, _globals,
                           item):
    if item.value is not None:
        raise StructureException('May not assign value whilst defining type',
                                 item)
    elif isinstance(item.annotation,
                    ast.Call) and item.annotation.func.id == "__log__":
        if _globals or len(_defs):
            raise StructureException(
                "Events must all come before global declarations and function definitions",
                item)
        _events.append(item)
    elif not isinstance(item.target, ast.Name):
        raise StructureException(
            "Can only assign type to variable in top-level statement", item)
    # Check if variable name is reserved or invalid
    elif not is_varname_valid(item.target.id):
        raise VariableDeclarationException(
            "Variable name invalid or reserved: ", item.target)
    # Check if global already exists, if so error
    elif item.target.id in _globals:
        raise VariableDeclarationException(
            "Cannot declare a persistent variable twice!", item.target)
    elif len(_defs):
        raise StructureException(
            "Global variables must all come before function definitions", item)
    # If the type declaration is of the form public(<type here>), then proceed with
    # the underlying type but also add getters
    elif isinstance(item.annotation,
                    ast.Call) and item.annotation.func.id == "address":
        if len(item.annotation.args) != 1:
            raise StructureException("Address expects one arg (the type)")
        if item.annotation.args[0].id not in premade_contracts:
            raise VariableDeclarationException(
                "Unsupported premade contract declaration",
                item.annotation.args[0])
        premade_contract = premade_contracts[item.annotation.args[0].id]
        _contracts[item.target.id] = add_contract(premade_contract.body)
        _globals[item.target.id] = VariableRecord(item.target.id,
                                                  len(_globals),
                                                  BaseType('address'), True)
    elif isinstance(item, ast.AnnAssign) and isinstance(
            item.annotation, ast.Name) and item.annotation.id in _contracts:
        _globals[item.target.id] = VariableRecord(
            item.target.id, len(_globals),
            BaseType('address', item.annotation.id), True)
    elif isinstance(item.annotation,
                    ast.Call) and item.annotation.func.id == "public":
        if len(item.annotation.args) != 1:
            raise StructureException("Public expects one arg (the type)")
        if isinstance(item.annotation.args[0],
                      ast.Name) and item.annotation.args[0].id in _contracts:
            typ = BaseType('address', item.annotation.args[0].id)
        else:
            typ = parse_type(item.annotation.args[0], 'storage')
        _globals[item.target.id] = VariableRecord(item.target.id,
                                                  len(_globals), typ, True)
        # Adding getters here
        for getter in mk_getter(item.target.id, typ):
            _getters.append(parse_line('\n' * (item.lineno - 1) + getter))
            _getters[-1].pos = getpos(item)
    else:
        _globals[item.target.id] = VariableRecord(
            item.target.id, len(_globals),
            parse_type(item.annotation, 'storage'), True)
    return _contracts, _events, _globals, _getters
Beispiel #12
0
def parse_func(code, sigs, origcode, global_ctx, _vars=None):
    if _vars is None:
        _vars = {}
    sig = FunctionSignature.from_definition(
        code, sigs=sigs, custom_units=global_ctx._custom_units)
    # Get base args for function.
    total_default_args = len(code.args.defaults)
    base_args = sig.args[:
                         -total_default_args] if total_default_args > 0 else sig.args
    default_args = code.args.args[-total_default_args:]
    default_values = dict(
        zip([arg.arg for arg in default_args], code.args.defaults))
    # __init__ function may not have defaults.
    if sig.name == '__init__' and total_default_args > 0:
        raise FunctionDeclarationException(
            "__init__ function may not have default parameters.")
    # Check for duplicate variables with globals
    for arg in sig.args:
        if arg.name in global_ctx._globals:
            raise FunctionDeclarationException(
                "Variable name duplicated between function arguments and globals: "
                + arg.name)

    # Create a local (per function) context.
    context = Context(vars=_vars,
                      global_ctx=global_ctx,
                      sigs=sigs,
                      return_type=sig.output_type,
                      is_constant=sig.const,
                      is_payable=sig.payable,
                      origcode=origcode,
                      is_private=sig.private,
                      method_id=sig.method_id)

    # Copy calldata to memory for fixed-size arguments
    max_copy_size = sum([
        32 if isinstance(arg.typ, ByteArrayType) else
        get_size_of_type(arg.typ) * 32 for arg in sig.args
    ])
    base_copy_size = sum([
        32 if isinstance(arg.typ, ByteArrayType) else
        get_size_of_type(arg.typ) * 32 for arg in base_args
    ])
    context.next_mem += max_copy_size

    clampers = []

    # Create callback_ptr, this stores a destination in the bytecode for a private
    # function to jump to after a function has executed.
    _post_callback_ptr = "{}_{}_post_callback_ptr".format(
        sig.name, sig.method_id)
    if sig.private:
        context.callback_ptr = context.new_placeholder(typ=BaseType('uint256'))
        clampers.append(
            LLLnode.from_list(['mstore', context.callback_ptr, 'pass'],
                              annotation='pop callback pointer'))
        if total_default_args > 0:
            clampers.append(['label', _post_callback_ptr])

    # private functions without return types need to jump back to
    # the calling function, as there is no return statement to handle the
    # jump.
    stop_func = [['stop']]
    if sig.output_type is None and sig.private:
        stop_func = [['jump', ['mload', context.callback_ptr]]]

    if not len(base_args):
        copier = 'pass'
    elif sig.name == '__init__':
        copier = [
            'codecopy', MemoryPositions.RESERVED_MEMORY, '~codelen',
            base_copy_size
        ]
    else:
        copier = get_arg_copier(sig=sig,
                                total_size=base_copy_size,
                                memory_dest=MemoryPositions.RESERVED_MEMORY)
    clampers.append(copier)

    # Add asserts for payable and internal
    # private never gets payable check.
    if not sig.payable and not sig.private:
        clampers.append(['assert', ['iszero', 'callvalue']])

    # Fill variable positions
    for i, arg in enumerate(sig.args):
        if i < len(base_args) and not sig.private:
            clampers.append(
                make_clamper(arg.pos, context.next_mem, arg.typ,
                             sig.name == '__init__'))
        if isinstance(arg.typ, ByteArrayType):
            context.vars[arg.name] = VariableRecord(arg.name, context.next_mem,
                                                    arg.typ, False)
            context.next_mem += 32 * get_size_of_type(arg.typ)
        else:
            context.vars[arg.name] = VariableRecord(
                arg.name, MemoryPositions.RESERVED_MEMORY + arg.pos, arg.typ,
                False)

    # Private function copiers. No clamping for private functions.
    dyn_variable_names = [
        a.name for a in base_args if isinstance(a.typ, ByteArrayType)
    ]
    if sig.private and dyn_variable_names:
        i_placeholder = context.new_placeholder(typ=BaseType('uint256'))
        unpackers = []
        for idx, var_name in enumerate(dyn_variable_names):
            var = context.vars[var_name]
            ident = "_load_args_%d_dynarg%d" % (sig.method_id, idx)
            o = make_unpacker(ident=ident,
                              i_placeholder=i_placeholder,
                              begin_pos=var.pos)
            unpackers.append(o)

        if not unpackers:
            unpackers = ['pass']

        clampers.append(
            LLLnode.from_list(
                ['seq_unchecked'] + unpackers + [
                    0
                ],  # [0] to complete full overarching 'seq' statement, see private_label.
                typ=None,
                annotation='dynamic unpacker',
                pos=getpos(code)))

    # Create "clampers" (input well-formedness checkers)
    # Return function body
    if sig.name == '__init__':
        o = LLLnode.from_list(['seq'] + clampers +
                              [parse_body(code.body, context)],
                              pos=getpos(code))
    elif is_default_func(sig):
        if len(sig.args) > 0:
            raise FunctionDeclarationException(
                'Default function may not receive any arguments.', code)
        if sig.private:
            raise FunctionDeclarationException(
                'Default function may only be public.', code)
        o = LLLnode.from_list(['seq'] + clampers +
                              [parse_body(code.body, context)],
                              pos=getpos(code))
    else:

        if total_default_args > 0:  # Function with default parameters.
            function_routine = "{}_{}".format(sig.name, sig.method_id)
            default_sigs = generate_default_arg_sigs(code, sigs,
                                                     global_ctx._custom_units)
            sig_chain = ['seq']

            for default_sig in default_sigs:
                sig_compare, private_label = get_sig_statements(
                    default_sig, getpos(code))

                # Populate unset default variables
                populate_arg_count = len(sig.args) - len(default_sig.args)
                set_defaults = []
                if populate_arg_count > 0:
                    current_sig_arg_names = {x.name for x in default_sig.args}
                    missing_arg_names = [
                        arg.arg for arg in default_args
                        if arg.arg not in current_sig_arg_names
                    ]
                    for arg_name in missing_arg_names:
                        value = Expr(default_values[arg_name],
                                     context).lll_node
                        var = context.vars[arg_name]
                        left = LLLnode.from_list(var.pos,
                                                 typ=var.typ,
                                                 location='memory',
                                                 pos=getpos(code),
                                                 mutable=var.mutable)
                        set_defaults.append(
                            make_setter(left,
                                        value,
                                        'memory',
                                        pos=getpos(code)))

                current_sig_arg_names = {x.name for x in default_sig.args}
                base_arg_names = {arg.name for arg in base_args}
                if sig.private:
                    # Load all variables in default section, if private,
                    # because the stack is a linear pipe.
                    copier_arg_count = len(default_sig.args)
                    copier_arg_names = current_sig_arg_names
                else:
                    copier_arg_count = len(default_sig.args) - len(base_args)
                    copier_arg_names = current_sig_arg_names - base_arg_names
                # Order copier_arg_names, this is very important.
                copier_arg_names = [
                    x.name for x in default_sig.args
                    if x.name in copier_arg_names
                ]

                # Variables to be populated from calldata/stack.
                default_copiers = []
                if copier_arg_count > 0:
                    # Get map of variables in calldata, with thier offsets
                    offset = 4
                    calldata_offset_map = {}
                    for arg in default_sig.args:
                        calldata_offset_map[arg.name] = offset
                        offset += 32 if isinstance(
                            arg.typ,
                            ByteArrayType) else get_size_of_type(arg.typ) * 32
                    # Copy set default parameters from calldata
                    dynamics = []
                    for arg_name in copier_arg_names:
                        var = context.vars[arg_name]
                        calldata_offset = calldata_offset_map[arg_name]
                        if sig.private:
                            _offset = calldata_offset
                            if isinstance(var.typ, ByteArrayType):
                                _size = 32
                                dynamics.append(var.pos)
                            else:
                                _size = var.size * 32
                            default_copiers.append(
                                get_arg_copier(sig=sig,
                                               memory_dest=var.pos,
                                               total_size=_size,
                                               offset=_offset))
                        else:
                            # Add clampers.
                            default_copiers.append(
                                make_clamper(calldata_offset - 4, var.pos,
                                             var.typ))
                            # Add copying code.
                            if isinstance(var.typ, ByteArrayType):
                                _offset = [
                                    'add', 4,
                                    ['calldataload', calldata_offset]
                                ]
                            else:
                                _offset = calldata_offset
                            default_copiers.append(
                                get_arg_copier(sig=sig,
                                               memory_dest=var.pos,
                                               total_size=var.size * 32,
                                               offset=_offset))

                    # Unpack byte array if necessary.
                    if dynamics:
                        i_placeholder = context.new_placeholder(
                            typ=BaseType('uint256'))
                        for idx, var_pos in enumerate(dynamics):
                            ident = 'unpack_default_sig_dyn_%d_arg%d' % (
                                default_sig.method_id, idx)
                            default_copiers.append(
                                make_unpacker(ident=ident,
                                              i_placeholder=i_placeholder,
                                              begin_pos=var_pos))
                    default_copiers.append(0)  # for over arching seq, POP

                sig_chain.append([
                    'if', sig_compare,
                    [
                        'seq', private_label,
                        LLLnode.from_list(
                            ['mstore', context.callback_ptr, 'pass'],
                            annotation='pop callback pointer',
                            pos=getpos(code)) if sig.private else ['pass'],
                        ['seq'] + set_defaults if set_defaults else ['pass'],
                        ['seq_unchecked'] +
                        default_copiers if default_copiers else ['pass'],
                        [
                            'goto', _post_callback_ptr
                            if sig.private else function_routine
                        ]
                    ]
                ])

            # With private functions all variable loading occurs in the default
            # function sub routine.
            if sig.private:
                _clampers = [['label', _post_callback_ptr]]
            else:
                _clampers = clampers

            # Function with default parameters.
            o = LLLnode.from_list(
                [
                    'seq',
                    sig_chain,
                    [
                        'if',
                        0,  # can only be jumped into
                        [
                            'seq', ['label', function_routine]
                            if not sig.private else ['pass'],
                            ['seq'] + _clampers +
                            [parse_body(c, context)
                             for c in code.body] + stop_func
                        ]
                    ]
                ],
                typ=None,
                pos=getpos(code))

        else:
            # Function without default parameters.
            sig_compare, private_label = get_sig_statements(sig, getpos(code))
            o = LLLnode.from_list([
                'if', sig_compare, ['seq'] + [private_label] + clampers +
                [parse_body(c, context) for c in code.body] + stop_func
            ],
                                  typ=None,
                                  pos=getpos(code))

    # Check for at leasts one return statement if necessary.
    if context.return_type and context.function_return_count == 0:
        raise FunctionDeclarationException(
            "Missing return statement in function '%s' " % sig.name, code)

    o.context = context
    o.total_gas = o.gas + calc_mem_gas(o.context.next_mem)
    o.func_name = sig.name
    return o
Beispiel #13
0
def pack_logging_data(expected_data, args, context, pos):
    # Checks to see if there's any data
    if not args:
        return ['seq'], 0, None, 0
    holder = ['seq']
    maxlen = len(args) * 32  # total size of all packed args (upper limit)

    requires_dynamic_offset = any(
        [isinstance(data.typ, ByteArrayType) for data in expected_data])
    if requires_dynamic_offset:
        zero_pad_i = context.new_placeholder(
            BaseType('uint256'))  # Iterator used to zero pad memory.
        dynamic_offset_counter = context.new_placeholder(BaseType(32))
        dynamic_placeholder = context.new_placeholder(BaseType(32))
    else:
        dynamic_offset_counter = None
        zero_pad_i = None

    # Populate static placeholders.
    placeholder_map = {}
    for i, (arg, data) in enumerate(zip(args, expected_data)):
        typ = data.typ
        placeholder = context.new_placeholder(BaseType(32))
        placeholder_map[i] = placeholder
        if not isinstance(typ, ByteArrayType):
            holder, maxlen = pack_args_by_32(holder,
                                             maxlen,
                                             arg,
                                             typ,
                                             context,
                                             placeholder,
                                             zero_pad_i=zero_pad_i,
                                             pos=pos)

    # Dynamic position starts right after the static args.
    if requires_dynamic_offset:
        holder.append(
            LLLnode.from_list(['mstore', dynamic_offset_counter, maxlen]))

    # Calculate maximum dynamic offset placeholders, used for gas estimation.
    for i, (arg, data) in enumerate(zip(args, expected_data)):
        typ = data.typ
        if isinstance(typ, ByteArrayType):
            maxlen += 32 + ceil32(typ.maxlen)

    if requires_dynamic_offset:
        datamem_start = dynamic_placeholder + 32
    else:
        datamem_start = placeholder_map[0]

    # Copy necessary data into allocated dynamic section.
    for i, (arg, data) in enumerate(zip(args, expected_data)):
        typ = data.typ
        if isinstance(typ, ByteArrayType):
            pack_args_by_32(holder=holder,
                            maxlen=maxlen,
                            arg=arg,
                            typ=typ,
                            context=context,
                            placeholder=placeholder_map[i],
                            datamem_start=datamem_start,
                            dynamic_offset_counter=dynamic_offset_counter,
                            zero_pad_i=zero_pad_i,
                            pos=pos)

    return holder, maxlen, dynamic_offset_counter, datamem_start
Beispiel #14
0
def raw_call(expr, args, kwargs, context):
    to, data = args
    gas, value, outsize, delegate_call = (
        kwargs['gas'],
        kwargs['value'],
        kwargs['outsize'],
        kwargs['delegate_call'],
    )
    if delegate_call.typ.is_literal is False:
        raise TypeMismatchException(
            'The delegate_call parameter has to be a static/literal boolean value.'
        )
    if context.is_constant():
        raise ConstancyViolationException(
            f"Cannot make calls from {context.pp_constancy()}",
            expr,
        )
    if value != zero_value:
        enforce_units(
            value.typ,
            get_keyword(expr, 'value'),
            BaseType('uint256', {'wei': 1}),
        )
    placeholder = context.new_placeholder(data.typ)
    placeholder_node = LLLnode.from_list(placeholder, typ=data.typ, location='memory')
    copier = make_byte_array_copier(placeholder_node, data, pos=getpos(expr))
    output_placeholder = context.new_placeholder(ByteArrayType(outsize))
    output_node = LLLnode.from_list(
        output_placeholder,
        typ=ByteArrayType(outsize),
        location='memory',
    )

    if delegate_call.value == 1:
        z = LLLnode.from_list(
            [
                'seq',
                copier,
                [
                    'assert',
                    [
                        'delegatecall',
                        gas,
                        to,
                        ['add', placeholder_node, 32],
                        ['mload', placeholder_node],
                        ['add', output_node, 32],
                        outsize,
                    ],
                ],
                ['mstore', output_node, outsize],
                output_node,
            ],
            typ=ByteArrayType(outsize),
            location='memory',
            pos=getpos(expr),
        )
    else:
        z = LLLnode.from_list(
            [
                'seq',
                copier,
                [
                    'assert',
                    [
                        'call',
                        gas,
                        to,
                        value,
                        ['add', placeholder_node, 32],
                        ['mload', placeholder_node],
                        ['add', output_node, 32],
                        outsize,
                    ],
                ],
                ['mstore', output_node, outsize],
                output_node,
            ],
            typ=ByteArrayType(outsize), location='memory', pos=getpos(expr)
        )
    return z
Beispiel #15
0
def blockhash(expr, args, kwargs, contact):
    return LLLnode.from_list(['blockhash', ['uclamplt', ['clampge', args[0], ['sub', ['number'], 256]], 'number']],
                             typ=BaseType('bytes32'), pos=getpos(expr))
Beispiel #16
0
    def arithmetic(self):
        pre_alloc_left, left = self.arithmetic_get_reference(self.expr.left)
        pre_alloc_right, right = self.arithmetic_get_reference(self.expr.right)

        if not is_numeric_type(left.typ) or not is_numeric_type(right.typ):
            raise TypeMismatchException(
                "Unsupported types for arithmetic op: %r %r" %
                (left.typ, right.typ), self.expr)

        arithmetic_pair = {left.typ.typ, right.typ.typ}

        # Special Case: Simplify any literal to literal arithmetic at compile time.
        if left.typ.is_literal and right.typ.is_literal and \
           isinstance(right.value, int) and isinstance(left.value, int):

            if isinstance(self.expr.op, ast.Add):
                val = left.value + right.value
            elif isinstance(self.expr.op, ast.Sub):
                val = left.value - right.value
            elif isinstance(self.expr.op, ast.Mult):
                val = left.value * right.value
            elif isinstance(self.expr.op, ast.Div):
                val = left.value // right.value
            elif isinstance(self.expr.op, ast.Mod):
                val = left.value % right.value
            elif isinstance(self.expr.op, ast.Pow):
                val = left.value**right.value
            else:
                raise ParserException(
                    'Unsupported literal operator: %s' %
                    str(type(self.expr.op)), self.expr)

            num = ast.Num(val)
            num.source_code = self.expr.source_code
            num.lineno = self.expr.lineno
            num.col_offset = self.expr.col_offset

            return Expr.parse_value_expr(num, self.context)

        # Special case with uint256 were int literal may be casted.
        if arithmetic_pair == {'uint256', 'int128'}:
            # Check right side literal.
            if right.typ.is_literal and SizeLimits.in_bounds(
                    'uint256', right.value):
                right = LLLnode.from_list(right.value,
                                          typ=BaseType('uint256',
                                                       None,
                                                       is_literal=True),
                                          pos=getpos(self.expr))
                arithmetic_pair = {left.typ.typ, right.typ.typ}
            # Check left side literal.
            elif left.typ.is_literal and SizeLimits.in_bounds(
                    'uint256', left.value):
                left = LLLnode.from_list(left.value,
                                         typ=BaseType('uint256',
                                                      None,
                                                      is_literal=True),
                                         pos=getpos(self.expr))
                arithmetic_pair = {left.typ.typ, right.typ.typ}

        # Only allow explicit conversions to occur.
        if left.typ.typ != right.typ.typ:
            raise TypeMismatchException(
                "Cannot implicitly convert {} to {}.".format(
                    left.typ.typ, right.typ.typ), self.expr)

        ltyp, rtyp = left.typ.typ, right.typ.typ
        if isinstance(self.expr.op, (ast.Add, ast.Sub)):
            if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None:
                raise TypeMismatchException(
                    "Unit mismatch: %r %r" % (left.typ.unit, right.typ.unit),
                    self.expr)
            if left.typ.positional and right.typ.positional and isinstance(
                    self.expr.op, ast.Add):
                raise TypeMismatchException("Cannot add two positional units!",
                                            self.expr)
            new_unit = left.typ.unit or right.typ.unit
            new_positional = left.typ.positional ^ right.typ.positional  # xor, as subtracting two positionals gives a delta
            op = 'add' if isinstance(self.expr.op, ast.Add) else 'sub'
            if ltyp == 'uint256' and isinstance(self.expr.op, ast.Add):
                o = LLLnode.from_list(
                    [
                        'seq',
                        # Checks that: a + b >= a
                        ['assert', ['ge', ['add', left, right], left]],
                        ['add', left, right]
                    ],
                    typ=BaseType('uint256', new_unit, new_positional),
                    pos=getpos(self.expr))
            elif ltyp == 'uint256' and isinstance(self.expr.op, ast.Sub):
                o = LLLnode.from_list(
                    [
                        'seq',
                        # Checks that: a >= b
                        ['assert', ['ge', left, right]],
                        ['sub', left, right]
                    ],
                    typ=BaseType('uint256', new_unit, new_positional),
                    pos=getpos(self.expr))
            elif ltyp == rtyp:
                o = LLLnode.from_list([op, left, right],
                                      typ=BaseType(ltyp, new_unit,
                                                   new_positional),
                                      pos=getpos(self.expr))
            else:
                raise Exception("Unsupported Operation '%r(%r, %r)'" %
                                (op, ltyp, rtyp))
        elif isinstance(self.expr.op, ast.Mult):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot multiply positional values!", self.expr)
            new_unit = combine_units(left.typ.unit, right.typ.unit)
            if ltyp == rtyp == 'uint256':
                o = LLLnode.from_list([
                    'if', ['eq', left, 0], [0],
                    [
                        'seq',
                        [
                            'assert',
                            ['eq', ['div', ['mul', left, right], left], right]
                        ], ['mul', left, right]
                    ]
                ],
                                      typ=BaseType('uint256', new_unit),
                                      pos=getpos(self.expr))
            elif ltyp == rtyp == 'int128':
                o = LLLnode.from_list(['mul', left, right],
                                      typ=BaseType('int128', new_unit),
                                      pos=getpos(self.expr))
            elif ltyp == rtyp == 'decimal':
                o = LLLnode.from_list([
                    'with', 'r', right,
                    [
                        'with', 'l', left,
                        [
                            'with', 'ans', ['mul', 'l', 'r'],
                            [
                                'seq',
                                [
                                    'assert',
                                    [
                                        'or', [
                                            'eq', ['sdiv', 'ans', 'l'], 'r'
                                        ], ['iszero', 'l']
                                    ]
                                ], ['sdiv', 'ans', DECIMAL_DIVISOR]
                            ]
                        ]
                    ]
                ],
                                      typ=BaseType('decimal', new_unit),
                                      pos=getpos(self.expr))
            else:
                raise Exception("Unsupported Operation 'mul(%r, %r)'" %
                                (ltyp, rtyp))
        elif isinstance(self.expr.op, ast.Div):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException("Cannot divide positional values!",
                                            self.expr)
            new_unit = combine_units(left.typ.unit, right.typ.unit, div=True)
            if ltyp == rtyp == 'uint256':
                o = LLLnode.from_list(
                    [
                        'seq',
                        # Checks that:  b != 0
                        ['assert', right],
                        ['div', left, right]
                    ],
                    typ=BaseType('uint256', new_unit),
                    pos=getpos(self.expr))
            elif ltyp == rtyp == 'int128':
                o = LLLnode.from_list(['sdiv', left, ['clamp_nonzero', right]],
                                      typ=BaseType('int128', new_unit),
                                      pos=getpos(self.expr))
            elif ltyp == rtyp == 'decimal':
                o = LLLnode.from_list([
                    'with', 'l', left,
                    [
                        'with', 'r', ['clamp_nonzero', right],
                        ['sdiv', ['mul', 'l', DECIMAL_DIVISOR], 'r']
                    ]
                ],
                                      typ=BaseType('decimal', new_unit),
                                      pos=getpos(self.expr))
            else:
                raise Exception("Unsupported Operation 'div(%r, %r)'" %
                                (ltyp, rtyp))
        elif isinstance(self.expr.op, ast.Mod):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot use positional values as modulus arguments!",
                    self.expr)
            if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None:
                raise TypeMismatchException(
                    "Modulus arguments must have same unit", self.expr)
            new_unit = left.typ.unit or right.typ.unit
            if ltyp == rtyp == 'uint256':
                o = LLLnode.from_list(
                    ['seq', ['assert', right], ['mod', left, right]],
                    typ=BaseType('uint256', new_unit),
                    pos=getpos(self.expr))
            elif ltyp == rtyp:
                o = LLLnode.from_list(['smod', left, ['clamp_nonzero', right]],
                                      typ=BaseType(ltyp, new_unit),
                                      pos=getpos(self.expr))
            else:
                raise Exception("Unsupported Operation 'mod(%r, %r)'" %
                                (ltyp, rtyp))
        elif isinstance(self.expr.op, ast.Pow):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot use positional values as exponential arguments!",
                    self.expr)
            if right.typ.unit:
                raise TypeMismatchException(
                    "Cannot use unit values as exponents", self.expr)
            if ltyp != 'int128' and ltyp != 'uint256' and isinstance(
                    self.expr.right, ast.Name):
                raise TypeMismatchException(
                    "Cannot use dynamic values as exponents, for unit base types",
                    self.expr)
            if ltyp == rtyp == 'uint256':
                o = LLLnode.from_list([
                    'seq',
                    [
                        'assert',
                        [
                            'or', ['or', ['eq', right, 1], ['iszero', right]],
                            ['lt', left, ['exp', left, right]]
                        ]
                    ], ['exp', left, right]
                ],
                                      typ=BaseType('uint256'),
                                      pos=getpos(self.expr))
            elif ltyp == rtyp == 'int128':
                new_unit = left.typ.unit
                if left.typ.unit and not isinstance(self.expr.right, ast.Name):
                    new_unit = {
                        left.typ.unit.copy().popitem()[0]: self.expr.right.n
                    }
                o = LLLnode.from_list(['exp', left, right],
                                      typ=BaseType('int128', new_unit),
                                      pos=getpos(self.expr))
            else:
                raise TypeMismatchException(
                    'Only whole number exponents are supported', self.expr)
        else:
            raise Exception("Unsupported binop: %r" % self.expr.op)

        p = ['seq']

        if pre_alloc_left:
            p.append(pre_alloc_left)
        if pre_alloc_right:
            p.append(pre_alloc_right)

        if o.typ.typ == 'int128':
            p.append([
                'clamp', ['mload', MemoryPositions.MINNUM], o,
                ['mload', MemoryPositions.MAXNUM]
            ])
            return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr))
        elif o.typ.typ == 'decimal':
            p.append([
                'clamp', ['mload', MemoryPositions.MINDECIMAL], o,
                ['mload', MemoryPositions.MAXDECIMAL]
            ])
            return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr))
        if o.typ.typ == 'uint256':
            p.append(o)
            return LLLnode.from_list(p, typ=o.typ, pos=getpos(self.expr))
        else:
            raise Exception("%r %r" % (o, o.typ))
Beispiel #17
0
def uint256_mulmod(expr, args, kwargs, context):
    return LLLnode.from_list(['seq',
                                ['assert', args[2]],
                                ['assert', ['or', ['iszero', args[0]],
                                ['eq', ['div', ['mul', args[0], args[1]], args[0]], args[1]]]],
                                ['mulmod', args[0], args[1], args[2]]], typ=BaseType('uint256'), pos=getpos(expr))
Beispiel #18
0
 def arithmetic(self):
     left = Expr.parse_value_expr(self.expr.left, self.context)
     right = Expr.parse_value_expr(self.expr.right, self.context)
     if not is_numeric_type(left.typ) or not is_numeric_type(right.typ):
         raise TypeMismatchException(
             "Unsupported types for arithmetic op: %r %r" %
             (left.typ, right.typ), self.expr)
     ltyp, rtyp = left.typ.typ, right.typ.typ
     if isinstance(self.expr.op, (ast.Add, ast.Sub)):
         if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None:
             raise TypeMismatchException(
                 "Unit mismatch: %r %r" % (left.typ.unit, right.typ.unit),
                 self.expr)
         if left.typ.positional and right.typ.positional and isinstance(
                 self.expr.op, ast.Add):
             raise TypeMismatchException("Cannot add two positional units!",
                                         self.expr)
         new_unit = left.typ.unit or right.typ.unit
         new_positional = left.typ.positional ^ right.typ.positional  # xor, as subtracting two positionals gives a delta
         op = 'add' if isinstance(self.expr.op, ast.Add) else 'sub'
         if ltyp == rtyp:
             o = LLLnode.from_list([op, left, right],
                                   typ=BaseType(ltyp, new_unit,
                                                new_positional),
                                   pos=getpos(self.expr))
         elif ltyp == 'int128' and rtyp == 'decimal':
             o = LLLnode.from_list(
                 [op, ['mul', left, DECIMAL_DIVISOR], right],
                 typ=BaseType('decimal', new_unit, new_positional),
                 pos=getpos(self.expr))
         elif ltyp == 'decimal' and rtyp == 'int128':
             o = LLLnode.from_list(
                 [op, left, ['mul', right, DECIMAL_DIVISOR]],
                 typ=BaseType('decimal', new_unit, new_positional),
                 pos=getpos(self.expr))
         else:
             raise Exception("Unsupported Operation '%r(%r, %r)'" %
                             (op, ltyp, rtyp))
     elif isinstance(self.expr.op, ast.Mult):
         if left.typ.positional or right.typ.positional:
             raise TypeMismatchException(
                 "Cannot multiply positional values!", self.expr)
         new_unit = combine_units(left.typ.unit, right.typ.unit)
         if ltyp == rtyp == 'int128':
             o = LLLnode.from_list(['mul', left, right],
                                   typ=BaseType('int128', new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == rtyp == 'decimal':
             o = LLLnode.from_list([
                 'with', 'r', right,
                 [
                     'with', 'l', left,
                     [
                         'with', 'ans', ['mul', 'l', 'r'],
                         [
                             'seq',
                             [
                                 'assert',
                                 [
                                     'or', [
                                         'eq', ['sdiv', 'ans', 'l'], 'r'
                                     ], ['not', 'l']
                                 ]
                             ], ['sdiv', 'ans', DECIMAL_DIVISOR]
                         ]
                     ]
                 ]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         elif (ltyp == 'int128'
               and rtyp == 'decimal') or (ltyp == 'decimal'
                                          and rtyp == 'int128'):
             o = LLLnode.from_list([
                 'with', 'r', right,
                 [
                     'with', 'l', left,
                     [
                         'with', 'ans', ['mul', 'l', 'r'],
                         [
                             'seq',
                             [
                                 'assert',
                                 [
                                     'or', [
                                         'eq', ['sdiv', 'ans', 'l'], 'r'
                                     ], ['not', 'l']
                                 ]
                             ], 'ans'
                         ]
                     ]
                 ]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         else:
             raise Exception("Unsupported Operation 'mul(%r, %r)'" %
                             (ltyp, rtyp))
     elif isinstance(self.expr.op, ast.Div):
         if left.typ.positional or right.typ.positional:
             raise TypeMismatchException("Cannot divide positional values!",
                                         self.expr)
         new_unit = combine_units(left.typ.unit, right.typ.unit, div=True)
         if ltyp == rtyp == 'int128':
             o = LLLnode.from_list([
                 'sdiv', ['mul', left, DECIMAL_DIVISOR],
                 ['clamp_nonzero', right]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == rtyp == 'decimal':
             o = LLLnode.from_list([
                 'with', 'l', left,
                 [
                     'with', 'r', ['clamp_nonzero', right],
                     ['sdiv', ['mul', 'l', DECIMAL_DIVISOR], 'r']
                 ]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == 'int128' and rtyp == 'decimal':
             o = LLLnode.from_list([
                 'sdiv', ['mul', left, DECIMAL_DIVISOR**2],
                 ['clamp_nonzero', right]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == 'decimal' and rtyp == 'int128':
             o = LLLnode.from_list(['sdiv', left, ['clamp_nonzero', right]],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         else:
             raise Exception("Unsupported Operation 'div(%r, %r)'" %
                             (ltyp, rtyp))
     elif isinstance(self.expr.op, ast.Mod):
         if left.typ.positional or right.typ.positional:
             raise TypeMismatchException(
                 "Cannot use positional values as modulus arguments!",
                 self.expr)
         if left.typ.unit != right.typ.unit and left.typ.unit is not None and right.typ.unit is not None:
             raise TypeMismatchException(
                 "Modulus arguments must have same unit", self.expr)
         new_unit = left.typ.unit or right.typ.unit
         if ltyp == rtyp:
             o = LLLnode.from_list(['smod', left, ['clamp_nonzero', right]],
                                   typ=BaseType(ltyp, new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == 'decimal' and rtyp == 'int128':
             o = LLLnode.from_list([
                 'smod', left,
                 ['mul', ['clamp_nonzero', right], DECIMAL_DIVISOR]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         elif ltyp == 'int128' and rtyp == 'decimal':
             o = LLLnode.from_list([
                 'smod', ['mul', left, DECIMAL_DIVISOR],
                 ['clamp_nonzero', right]
             ],
                                   typ=BaseType('decimal', new_unit),
                                   pos=getpos(self.expr))
         else:
             raise Exception("Unsupported Operation 'mod(%r, %r)'" %
                             (ltyp, rtyp))
     elif isinstance(self.expr.op, ast.Pow):
         if left.typ.positional or right.typ.positional:
             raise TypeMismatchException(
                 "Cannot use positional values as exponential arguments!",
                 self.expr)
         if right.typ.unit:
             raise TypeMismatchException(
                 "Cannot use unit values as exponents", self.expr)
         if ltyp != 'int128' and isinstance(self.expr.right, ast.Name):
             raise TypeMismatchException(
                 "Cannot use dynamic values as exponents, for unit base types",
                 self.expr)
         if ltyp == rtyp == 'int128':
             new_unit = left.typ.unit
             if left.typ.unit and not isinstance(self.expr.right, ast.Name):
                 new_unit = {
                     left.typ.unit.copy().popitem()[0]: self.expr.right.n
                 }
             o = LLLnode.from_list(['exp', left, right],
                                   typ=BaseType('int128', new_unit),
                                   pos=getpos(self.expr))
         else:
             raise TypeMismatchException(
                 'Only whole number exponents are supported', self.expr)
     else:
         raise Exception("Unsupported binop: %r" % self.expr.op)
     if o.typ.typ == 'int128':
         return LLLnode.from_list([
             'clamp', ['mload', MemoryPositions.MINNUM], o,
             ['mload', MemoryPositions.MAXNUM]
         ],
                                  typ=o.typ,
                                  pos=getpos(self.expr))
     elif o.typ.typ == 'decimal':
         return LLLnode.from_list([
             'clamp', ['mload', MemoryPositions.MINDECIMAL], o,
             ['mload', MemoryPositions.MAXDECIMAL]
         ],
                                  typ=o.typ,
                                  pos=getpos(self.expr))
     else:
         raise Exception("%r %r" % (o, o.typ))
Beispiel #19
0
def to_decimal(expr, args, kwargs, context):
    in_arg = args[0]
    input_type, _ = get_type(in_arg)

    if input_type == 'bytes':
        if in_arg.typ.maxlen > 32:
            raise TypeMismatchException(
                "Cannot convert bytes array of max length {} to decimal".
                format(in_arg.value), expr)
        num = byte_array_to_num(in_arg, expr, 'int128')
        return LLLnode.from_list(['mul', num, DECIMAL_DIVISOR],
                                 typ=BaseType('decimal'),
                                 pos=getpos(expr))

    else:
        _unit = in_arg.typ.unit
        _positional = in_arg.typ.positional

        if input_type == 'uint256':
            if in_arg.typ.is_literal:
                if not SizeLimits.in_bounds('int128',
                                            (in_arg.value * DECIMAL_DIVISOR)):
                    raise InvalidLiteralException(
                        "Number out of range: {}".format(in_arg.value), expr)
                else:
                    return LLLnode.from_list(['mul', in_arg, DECIMAL_DIVISOR],
                                             typ=BaseType(
                                                 'decimal', _unit,
                                                 _positional),
                                             pos=getpos(expr))
            else:
                return LLLnode.from_list([
                    'uclample', ['mul', in_arg, DECIMAL_DIVISOR],
                    ['mload', MemoryPositions.MAXDECIMAL]
                ],
                                         typ=BaseType('decimal', _unit,
                                                      _positional),
                                         pos=getpos(expr))

        elif input_type == 'bytes32':
            if in_arg.typ.is_literal:
                if not SizeLimits.in_bounds('int128',
                                            (in_arg.value * DECIMAL_DIVISOR)):
                    raise InvalidLiteralException(
                        "Number out of range: {}".format(in_arg.value), expr)
                else:
                    return LLLnode.from_list(['mul', in_arg, DECIMAL_DIVISOR],
                                             typ=BaseType(
                                                 'decimal', _unit,
                                                 _positional),
                                             pos=getpos(expr))
            else:
                return LLLnode.from_list([
                    'clamp', ['mload', MemoryPositions.MINDECIMAL],
                    ['mul', in_arg, DECIMAL_DIVISOR],
                    ['mload', MemoryPositions.MAXDECIMAL]
                ],
                                         typ=BaseType('decimal', _unit,
                                                      _positional),
                                         pos=getpos(expr))

        elif input_type in ('int128', 'bool'):
            return LLLnode.from_list(['mul', in_arg, DECIMAL_DIVISOR],
                                     typ=BaseType('decimal', _unit,
                                                  _positional),
                                     pos=getpos(expr))

        else:
            raise InvalidLiteralException(
                "Invalid input for decimal: %r" % in_arg, expr)
Beispiel #20
0
    def parse_for(self):
        # from .parser import (
        #     parse_body,
        # )
        # Type 0 for, e.g. for i in list(): ...
        if self._is_list_iter():
            return self.parse_for_list()

        is_invalid_for_statement = any((
            not isinstance(self.stmt.iter, ast.Call),
            not isinstance(self.stmt.iter.func, ast.Name),
            not isinstance(self.stmt.target, ast.Name),
            self.stmt.iter.func.id != "range",
            len(self.stmt.iter.args) not in {1, 2},
        ))
        if is_invalid_for_statement:
            raise StructureException(
                ("For statements must be of the form `for i in range(rounds): "
                 "..` or `for i in range(start, start + rounds): ..`"),
                self.stmt.iter)

        block_scope_id = id(self.stmt)
        with self.context.make_blockscope(block_scope_id):
            # Get arg0
            arg0 = self.stmt.iter.args[0]
            num_of_args = len(self.stmt.iter.args)

            # Type 1 for, e.g. for i in range(10): ...
            if num_of_args == 1:
                arg0_val = self._get_range_const_value(arg0)
                start = LLLnode.from_list(0,
                                          typ='int128',
                                          pos=getpos(self.stmt))
                rounds = arg0_val

            # Type 2 for, e.g. for i in range(100, 110): ...
            elif self._check_valid_range_constant(self.stmt.iter.args[1],
                                                  raise_exception=False)[0]:
                arg0_val = self._get_range_const_value(arg0)
                arg1_val = self._get_range_const_value(self.stmt.iter.args[1])
                start = LLLnode.from_list(arg0_val,
                                          typ='int128',
                                          pos=getpos(self.stmt))
                rounds = LLLnode.from_list(arg1_val - arg0_val,
                                           typ='int128',
                                           pos=getpos(self.stmt))

            # Type 3 for, e.g. for i in range(x, x + 10): ...
            else:
                arg1 = self.stmt.iter.args[1]
                if not isinstance(arg1, ast.BinOp) or not isinstance(
                        arg1.op, ast.Add):
                    raise StructureException(
                        ("Two-arg for statements must be of the form `for i "
                         "in range(start, start + rounds): ...`"),
                        arg1,
                    )

                if arg0 != arg1.left:
                    raise StructureException(
                        ("Two-arg for statements of the form `for i in "
                         "range(x, x + y): ...` must have x identical in both "
                         f"places: {ast_to_dict(arg0)} {ast_to_dict(arg1.left)}"
                         ),
                        self.stmt.iter,
                    )

                rounds = self._get_range_const_value(arg1.right)
                start = Expr.parse_value_expr(arg0, self.context)

            varname = self.stmt.target.id
            pos = self.context.new_variable(varname,
                                            BaseType('int128'),
                                            pos=getpos(self.stmt))
            self.context.forvars[varname] = True
            o = LLLnode.from_list(
                [
                    'repeat', pos, start, rounds,
                    parse_body(self.stmt.body, self.context)
                ],
                typ=None,
                pos=getpos(self.stmt),
            )
            del self.context.vars[varname]
            del self.context.forvars[varname]

        return o
Beispiel #21
0
    def number(self):
        orignum = get_original_if_0_prefixed(self.expr, self.context)

        if orignum is None and isinstance(self.expr.n, int):
            # Literal (mostly likely) becomes int128
            if SizeLimits.in_bounds('int128', self.expr.n) or self.expr.n < 0:
                return LLLnode.from_list(
                    self.expr.n,
                    typ=BaseType('int128', unit={}, is_literal=True),
                    pos=getpos(self.expr),
                )
            # Literal is large enough (mostly likely) becomes uint256.
            else:
                return LLLnode.from_list(
                    self.expr.n,
                    typ=BaseType('uint256', unit={}, is_literal=True),
                    pos=getpos(self.expr),
                )

        elif isinstance(self.expr.n, float):
            numstring, num, den = get_number_as_fraction(
                self.expr, self.context)
            # if not SizeLimits.in_bounds('decimal', num // den):
            # if not SizeLimits.MINDECIMAL * den <= num <= SizeLimits.MAXDECIMAL * den:
            if not (SizeLimits.MINNUM * den < num < SizeLimits.MAXNUM * den):
                raise InvalidLiteralException(
                    "Number out of range: " + numstring, self.expr)
            if DECIMAL_DIVISOR % den:
                raise InvalidLiteralException(
                    "Type 'decimal' has maximum 10 decimal places", self.expr)
            return LLLnode.from_list(
                num * DECIMAL_DIVISOR // den,
                typ=BaseType('decimal', unit=None, is_literal=True),
                pos=getpos(self.expr),
            )

        # Binary literal.
        elif orignum[:2] == '0b':
            str_val = orignum[2:]
            total_bits = len(orignum[2:])
            total_bits = (
                total_bits if total_bits % 8 == 0 else total_bits + 8 -
                (total_bits % 8)  # ceil8 to get byte length.
            )
            if len(
                    orignum[2:]
            ) != total_bits:  # Support only full formed bit definitions.
                raise InvalidLiteralException(
                    f"Bit notation requires a multiple of 8 bits / 1 byte. "
                    f"{total_bits - len(orignum[2:])} bit(s) are missing.",
                    self.expr,
                )
            byte_len = int(total_bits / 8)
            placeholder = self.context.new_placeholder(ByteArrayType(byte_len))
            seq = []
            seq.append(['mstore', placeholder, byte_len])
            for i in range(0, total_bits, 256):
                section = str_val[i:i + 256]
                int_val = int(section, 2) << (256 - len(section)
                                              )  # bytes are right padded.
                seq.append(['mstore', ['add', placeholder, i + 32], int_val])
            return LLLnode.from_list(
                ['seq'] + seq + [placeholder],
                typ=ByteArrayType(byte_len),
                location='memory',
                pos=getpos(self.expr),
                annotation=f'Create ByteArray (Binary literal): {str_val}',
            )
        elif len(orignum) == 42:
            if checksum_encode(orignum) != orignum:
                raise InvalidLiteralException(
                    "Address checksum mismatch. If you are sure this is the "
                    f"right address, the correct checksummed form is: {checksum_encode(orignum)}",
                    self.expr)
            return LLLnode.from_list(
                self.expr.n,
                typ=BaseType('address', is_literal=True),
                pos=getpos(self.expr),
            )
        elif len(orignum) == 66:
            return LLLnode.from_list(
                self.expr.n,
                typ=BaseType('bytes32', is_literal=True),
                pos=getpos(self.expr),
            )
        else:
            raise InvalidLiteralException(
                f"Cannot read 0x value with length {len(orignum)}. Expecting 42 (address "
                "incl 0x) or 66 (bytes32 incl 0x)", self.expr)
Beispiel #22
0
    def parse_for_list(self):
        with self.context.range_scope():
            iter_list_node = Expr(self.stmt.iter, self.context).lll_node
        if not isinstance(iter_list_node.typ.subtype,
                          BaseType):  # Sanity check on list subtype.
            raise StructureException(
                'For loops allowed only on basetype lists.', self.stmt.iter)
        iter_var_type = (self.context.vars.get(self.stmt.iter.id).typ
                         if isinstance(self.stmt.iter, ast.Name) else None)
        subtype = iter_list_node.typ.subtype.typ
        varname = self.stmt.target.id
        value_pos = self.context.new_variable(
            varname,
            BaseType(subtype, unit=iter_list_node.typ.subtype.unit),
        )
        i_pos_raw_name = '_index_for_' + varname
        i_pos = self.context.new_internal_variable(
            i_pos_raw_name,
            BaseType(subtype),
        )
        self.context.forvars[varname] = True

        # Is a list that is already allocated to memory.
        if iter_var_type:

            list_name = self.stmt.iter.id
            # make sure list cannot be altered whilst iterating.
            with self.context.in_for_loop_scope(list_name):
                iter_var = self.context.vars.get(self.stmt.iter.id)
                if iter_var.location == 'calldata':
                    fetcher = 'calldataload'
                elif iter_var.location == 'memory':
                    fetcher = 'mload'
                else:
                    raise CompilerPanic(
                        f'List iteration only supported on in-memory types {self.expr}',
                    )
                body = [
                    'seq',
                    [
                        'mstore',
                        value_pos,
                        [
                            fetcher,
                            [
                                'add', iter_var.pos,
                                ['mul', ['mload', i_pos], 32]
                            ]
                        ],
                    ],
                    parse_body(self.stmt.body, self.context)
                ]
                o = LLLnode.from_list(
                    ['repeat', i_pos, 0, iter_var.size, body],
                    typ=None,
                    pos=getpos(self.stmt))

        # List gets defined in the for statement.
        elif isinstance(self.stmt.iter, ast.List):
            # Allocate list to memory.
            count = iter_list_node.typ.count
            tmp_list = LLLnode.from_list(obj=self.context.new_placeholder(
                ListType(iter_list_node.typ.subtype, count)),
                                         typ=ListType(
                                             iter_list_node.typ.subtype,
                                             count),
                                         location='memory')
            setter = make_setter(tmp_list,
                                 iter_list_node,
                                 'memory',
                                 pos=getpos(self.stmt))
            body = [
                'seq',
                [
                    'mstore', value_pos,
                    [
                        'mload',
                        ['add', tmp_list, ['mul', ['mload', i_pos], 32]]
                    ]
                ],
                parse_body(self.stmt.body, self.context)
            ]
            o = LLLnode.from_list(
                ['seq', setter, ['repeat', i_pos, 0, count, body]],
                typ=None,
                pos=getpos(self.stmt))

        # List contained in storage.
        elif isinstance(self.stmt.iter, ast.Attribute):
            count = iter_list_node.typ.count
            list_name = iter_list_node.annotation

            # make sure list cannot be altered whilst iterating.
            with self.context.in_for_loop_scope(list_name):
                body = [
                    'seq',
                    [
                        'mstore', value_pos,
                        [
                            'sload',
                            [
                                'add', ['sha3_32', iter_list_node],
                                ['mload', i_pos]
                            ]
                        ]
                    ],
                    parse_body(self.stmt.body, self.context),
                ]
                o = LLLnode.from_list(
                    ['seq', ['repeat', i_pos, 0, count, body]],
                    typ=None,
                    pos=getpos(self.stmt))

        del self.context.vars[varname]
        # this kind of open access to the vars dict should be disallowed.
        # we should use member functions to provide an API for these kinds
        # of operations.
        del self.context.vars[self.context._mangle(i_pos_raw_name)]
        del self.context.forvars[varname]
        return o
Beispiel #23
0
    def arithmetic(self):
        left = Expr.parse_value_expr(self.expr.left, self.context)
        right = Expr.parse_value_expr(self.expr.right, self.context)

        if not is_numeric_type(left.typ) or not is_numeric_type(right.typ):
            raise TypeMismatchException(
                f"Unsupported types for arithmetic op: {left.typ} {right.typ}",
                self.expr,
            )

        arithmetic_pair = {left.typ.typ, right.typ.typ}

        # Special Case: Simplify any literal to literal arithmetic at compile time.
        if left.typ.is_literal and right.typ.is_literal and \
           isinstance(right.value, int) and isinstance(left.value, int) and \
           arithmetic_pair.issubset({'uint256', 'int128'}):

            if isinstance(self.expr.op, ast.Add):
                val = left.value + right.value
            elif isinstance(self.expr.op, ast.Sub):
                val = left.value - right.value
            elif isinstance(self.expr.op, ast.Mult):
                val = left.value * right.value
            elif isinstance(self.expr.op, ast.Div):
                val = left.value // right.value
            elif isinstance(self.expr.op, ast.Mod):
                val = left.value % right.value
            elif isinstance(self.expr.op, ast.Pow):
                val = left.value**right.value
            else:
                raise ParserException(
                    f'Unsupported literal operator: {str(type(self.expr.op))}',
                    self.expr,
                )

            num = ast.Num(n=val)
            num.source_code = self.expr.source_code
            num.lineno = self.expr.lineno
            num.col_offset = self.expr.col_offset
            num.end_lineno = self.expr.end_lineno
            num.end_col_offset = self.expr.end_col_offset

            return Expr.parse_value_expr(num, self.context)

        pos = getpos(self.expr)

        # Special case with uint256 were int literal may be casted.
        if arithmetic_pair == {'uint256', 'int128'}:
            # Check right side literal.
            if right.typ.is_literal and SizeLimits.in_bounds(
                    'uint256', right.value):
                right = LLLnode.from_list(
                    right.value,
                    typ=BaseType('uint256', None, is_literal=True),
                    pos=pos,
                )

            # Check left side literal.
            elif left.typ.is_literal and SizeLimits.in_bounds(
                    'uint256', left.value):
                left = LLLnode.from_list(
                    left.value,
                    typ=BaseType('uint256', None, is_literal=True),
                    pos=pos,
                )

        # Only allow explicit conversions to occur.
        if left.typ.typ != right.typ.typ:
            raise TypeMismatchException(
                f"Cannot implicitly convert {left.typ.typ} to {right.typ.typ}.",
                self.expr,
            )

        ltyp, rtyp = left.typ.typ, right.typ.typ
        if isinstance(self.expr.op, (ast.Add, ast.Sub)):
            if left.typ.unit != right.typ.unit and left.typ.unit != {} and right.typ.unit != {}:
                raise TypeMismatchException(
                    f"Unit mismatch: {left.typ.unit} {right.typ.unit}",
                    self.expr,
                )
            if left.typ.positional and right.typ.positional and isinstance(
                    self.expr.op, ast.Add):
                raise TypeMismatchException(
                    "Cannot add two positional units!",
                    self.expr,
                )
            new_unit = left.typ.unit or right.typ.unit

            # xor, as subtracting two positionals gives a delta
            new_positional = left.typ.positional ^ right.typ.positional

            new_typ = BaseType(ltyp, new_unit, new_positional)

            op = 'add' if isinstance(self.expr.op, ast.Add) else 'sub'

            if ltyp == 'uint256' and isinstance(self.expr.op, ast.Add):
                # safeadd
                arith = [
                    'seq', ['assert', ['ge', ['add', 'l', 'r'], 'l']],
                    ['add', 'l', 'r']
                ]

            elif ltyp == 'uint256' and isinstance(self.expr.op, ast.Sub):
                # safesub
                arith = [
                    'seq', ['assert', ['ge', 'l', 'r']], ['sub', 'l', 'r']
                ]

            elif ltyp == rtyp:
                arith = [op, 'l', 'r']

            else:
                raise Exception(
                    f"Unsupported Operation '{op}({ltyp}, {rtyp})'")

        elif isinstance(self.expr.op, ast.Mult):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot multiply positional values!", self.expr)
            new_unit = combine_units(left.typ.unit, right.typ.unit)
            new_typ = BaseType(ltyp, new_unit)

            if ltyp == rtyp == 'uint256':
                arith = [
                    'with', 'ans', ['mul', 'l', 'r'],
                    [
                        'seq',
                        [
                            'assert',
                            [
                                'or', ['eq', ['div', 'ans', 'l'], 'r'],
                                ['iszero', 'l']
                            ]
                        ], 'ans'
                    ]
                ]

            elif ltyp == rtyp == 'int128':
                # TODO should this be 'smul' (note edge cases in YP for smul)
                arith = ['mul', 'l', 'r']

            elif ltyp == rtyp == 'decimal':
                # TODO should this be smul
                arith = [
                    'with', 'ans', ['mul', 'l', 'r'],
                    [
                        'seq',
                        [
                            'assert',
                            [
                                'or', ['eq', ['sdiv', 'ans', 'l'], 'r'],
                                ['iszero', 'l']
                            ]
                        ], ['sdiv', 'ans', DECIMAL_DIVISOR]
                    ]
                ]
            else:
                raise Exception(f"Unsupported Operation 'mul({ltyp}, {rtyp})'")

        elif isinstance(self.expr.op, ast.Div):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException("Cannot divide positional values!",
                                            self.expr)
            new_unit = combine_units(left.typ.unit, right.typ.unit, div=True)
            new_typ = BaseType(ltyp, new_unit)
            if ltyp == rtyp == 'uint256':
                arith = ['div', 'l', ['clamp_nonzero', 'r']]

            elif ltyp == rtyp == 'int128':
                arith = ['sdiv', 'l', ['clamp_nonzero', 'r']]

            elif ltyp == rtyp == 'decimal':
                arith = [
                    'sdiv',
                    # TODO check overflow cases, also should it be smul
                    ['mul', 'l', DECIMAL_DIVISOR],
                    ['clamp_nonzero', 'r']
                ]

            else:
                raise Exception(f"Unsupported Operation 'div({ltyp}, {rtyp})'")

        elif isinstance(self.expr.op, ast.Mod):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot use positional values as modulus arguments!",
                    self.expr,
                )

            if not are_units_compatible(left.typ, right.typ) and not (
                    left.typ.unit or right.typ.unit):  # noqa: E501
                raise TypeMismatchException(
                    "Modulus arguments must have same unit", self.expr)
            new_unit = left.typ.unit or right.typ.unit
            new_typ = BaseType(ltyp, new_unit)

            if ltyp == rtyp == 'uint256':
                arith = ['mod', 'l', ['clamp_nonzero', 'r']]
            elif ltyp == rtyp:
                # TODO should this be regular mod
                arith = ['smod', 'l', ['clamp_nonzero', 'r']]

            else:
                raise Exception(f"Unsupported Operation 'mod({ltyp}, {rtyp})'")
        elif isinstance(self.expr.op, ast.Pow):
            if left.typ.positional or right.typ.positional:
                raise TypeMismatchException(
                    "Cannot use positional values as exponential arguments!",
                    self.expr,
                )
            if right.typ.unit:
                raise TypeMismatchException(
                    "Cannot use unit values as exponents",
                    self.expr,
                )
            if ltyp != 'int128' and ltyp != 'uint256' and isinstance(
                    self.expr.right, ast.Name):
                raise TypeMismatchException(
                    "Cannot use dynamic values as exponents, for unit base types",
                    self.expr,
                )
            new_unit = left.typ.unit
            if left.typ.unit and not isinstance(self.expr.right, ast.Name):
                new_unit = {
                    left.typ.unit.copy().popitem()[0]: self.expr.right.n
                }
            new_typ = BaseType(ltyp, new_unit)

            if ltyp == rtyp == 'uint256':
                arith = [
                    'seq',
                    [
                        'assert',
                        [
                            'or',
                            # r == 1 | iszero(r)
                            # could be simplified to ~(r & 1)
                            ['or', ['eq', 'r', 1], ['iszero', 'r']],
                            ['lt', 'l', ['exp', 'l', 'r']]
                        ]
                    ],
                    ['exp', 'l', 'r']
                ]
            elif ltyp == rtyp == 'int128':
                arith = ['exp', 'l', 'r']

            else:
                raise TypeMismatchException(
                    'Only whole number exponents are supported', self.expr)
        else:
            raise ParserException(
                f"Unsupported binary operator: {self.expr.op}", self.expr)

        p = ['seq']

        if new_typ.typ == 'int128':
            p.append([
                'clamp',
                ['mload', MemoryPositions.MINNUM],
                arith,
                ['mload', MemoryPositions.MAXNUM],
            ])
        elif new_typ.typ == 'decimal':
            p.append([
                'clamp',
                ['mload', MemoryPositions.MINDECIMAL],
                arith,
                ['mload', MemoryPositions.MAXDECIMAL],
            ])
        elif new_typ.typ == 'uint256':
            p.append(arith)
        else:
            raise Exception(f"{arith} {new_typ}")

        p = ['with', 'l', left, ['with', 'r', right, p]]
        return LLLnode.from_list(p, typ=new_typ, pos=pos)
Beispiel #24
0
    def parse_return(self):
        if self.context.return_type is None:
            if self.stmt.value:
                raise TypeMismatchException("Not expecting to return a value",
                                            self.stmt)
            return LLLnode.from_list(
                make_return_stmt(self.stmt, self.context, 0, 0),
                typ=None,
                pos=getpos(self.stmt),
                valency=0,
            )
        if not self.stmt.value:
            raise TypeMismatchException("Expecting to return a value",
                                        self.stmt)

        sub = Expr(self.stmt.value, self.context).lll_node

        # Returning a value (most common case)
        if isinstance(sub.typ, BaseType):
            sub = unwrap_location(sub)

            if not isinstance(self.context.return_type, BaseType):
                raise TypeMismatchException(
                    f"Return type units mismatch {sub.typ} {self.context.return_type}",
                    self.stmt.value)
            elif self.context.return_type != sub.typ and not sub.typ.is_literal:
                raise TypeMismatchException(
                    f"Trying to return base type {sub.typ}, output expecting "
                    f"{self.context.return_type}",
                    self.stmt.value,
                )
            elif sub.typ.is_literal and (
                    self.context.return_type.typ == sub.typ
                    or 'int' in self.context.return_type.typ
                    and 'int' in sub.typ.typ):  # noqa: E501
                if not SizeLimits.in_bounds(self.context.return_type.typ,
                                            sub.value):
                    raise InvalidLiteralException(
                        "Number out of range: " + str(sub.value), self.stmt)
                else:
                    return LLLnode.from_list(
                        [
                            'seq', ['mstore', 0, sub],
                            make_return_stmt(self.stmt, self.context, 0, 32)
                        ],
                        typ=None,
                        pos=getpos(self.stmt),
                        valency=0,
                    )
            elif is_base_type(sub.typ, self.context.return_type.typ) or (
                    is_base_type(sub.typ, 'int128') and is_base_type(
                        self.context.return_type, 'int256')):  # noqa: E501
                return LLLnode.from_list(
                    [
                        'seq', ['mstore', 0, sub],
                        make_return_stmt(self.stmt, self.context, 0, 32)
                    ],
                    typ=None,
                    pos=getpos(self.stmt),
                    valency=0,
                )
            else:
                raise TypeMismatchException(
                    f"Unsupported type conversion: {sub.typ} to {self.context.return_type}",
                    self.stmt.value,
                )
        # Returning a byte array
        elif isinstance(sub.typ, ByteArrayLike):
            if not sub.typ.eq_base(self.context.return_type):
                raise TypeMismatchException(
                    f"Trying to return base type {sub.typ}, output expecting "
                    f"{self.context.return_type}",
                    self.stmt.value,
                )
            if sub.typ.maxlen > self.context.return_type.maxlen:
                raise TypeMismatchException(
                    f"Cannot cast from greater max-length {sub.typ.maxlen} to shorter "
                    f"max-length {self.context.return_type.maxlen}",
                    self.stmt.value,
                )

            # loop memory has to be allocated first.
            loop_memory_position = self.context.new_placeholder(
                typ=BaseType('uint256'))
            # len & bytez placeholder have to be declared after each other at all times.
            len_placeholder = self.context.new_placeholder(
                typ=BaseType('uint256'))
            bytez_placeholder = self.context.new_placeholder(typ=sub.typ)

            if sub.location in ('storage', 'memory'):
                return LLLnode.from_list([
                    'seq',
                    make_byte_array_copier(LLLnode(
                        bytez_placeholder, location='memory', typ=sub.typ),
                                           sub,
                                           pos=getpos(self.stmt)),
                    zero_pad(bytez_placeholder),
                    ['mstore', len_placeholder, 32],
                    make_return_stmt(
                        self.stmt,
                        self.context,
                        len_placeholder,
                        ['ceil32', ['add', ['mload', bytez_placeholder], 64]],
                        loop_memory_position=loop_memory_position,
                    )
                ],
                                         typ=None,
                                         pos=getpos(self.stmt),
                                         valency=0)
            else:
                raise Exception(f"Invalid location: {sub.location}")

        elif isinstance(sub.typ, ListType):
            sub_base_type = re.split(r'\(|\[', str(sub.typ.subtype))[0]
            ret_base_type = re.split(r'\(|\[',
                                     str(self.context.return_type.subtype))[0]
            loop_memory_position = self.context.new_placeholder(
                typ=BaseType('uint256'))
            if sub_base_type != ret_base_type:
                raise TypeMismatchException(
                    f"List return type {sub_base_type} does not match specified "
                    f"return type, expecting {ret_base_type}", self.stmt)
            elif sub.location == "memory" and sub.value != "multi":
                return LLLnode.from_list(
                    make_return_stmt(
                        self.stmt,
                        self.context,
                        sub,
                        get_size_of_type(self.context.return_type) * 32,
                        loop_memory_position=loop_memory_position,
                    ),
                    typ=None,
                    pos=getpos(self.stmt),
                    valency=0,
                )
            else:
                new_sub = LLLnode.from_list(
                    self.context.new_placeholder(self.context.return_type),
                    typ=self.context.return_type,
                    location='memory',
                )
                setter = make_setter(new_sub,
                                     sub,
                                     'memory',
                                     pos=getpos(self.stmt))
                return LLLnode.from_list([
                    'seq', setter,
                    make_return_stmt(
                        self.stmt,
                        self.context,
                        new_sub,
                        get_size_of_type(self.context.return_type) * 32,
                        loop_memory_position=loop_memory_position,
                    )
                ],
                                         typ=None,
                                         pos=getpos(self.stmt))

        # Returning a struct
        elif isinstance(sub.typ, StructType):
            retty = self.context.return_type
            if not isinstance(retty, StructType) or retty.name != sub.typ.name:
                raise TypeMismatchException(
                    f"Trying to return {sub.typ}, output expecting {self.context.return_type}",
                    self.stmt.value,
                )
            return gen_tuple_return(self.stmt, self.context, sub)

        # Returning a tuple.
        elif isinstance(sub.typ, TupleType):
            if not isinstance(self.context.return_type, TupleType):
                raise TypeMismatchException(
                    f"Trying to return tuple type {sub.typ}, output expecting "
                    f"{self.context.return_type}",
                    self.stmt.value,
                )

            if len(self.context.return_type.members) != len(sub.typ.members):
                raise StructureException("Tuple lengths don't match!",
                                         self.stmt)

            # check return type matches, sub type.
            for i, ret_x in enumerate(self.context.return_type.members):
                s_member = sub.typ.members[i]
                sub_type = s_member if isinstance(s_member,
                                                  NodeType) else s_member.typ
                if type(sub_type) is not type(ret_x):
                    raise StructureException(
                        "Tuple return type does not match annotated return. "
                        f"{type(sub_type)} != {type(ret_x)}", self.stmt)
            return gen_tuple_return(self.stmt, self.context, sub)

        else:
            raise TypeMismatchException(f"Can't return type {sub.typ}",
                                        self.stmt)
Beispiel #25
0
def get_length(arg):
    if arg.location == "memory":
        return LLLnode.from_list(['mload', arg], typ=BaseType('int128'))
    elif arg.location == "storage":
        return LLLnode.from_list(['sload', ['sha3_32', arg]],
                                 typ=BaseType('int128'))
Beispiel #26
0
        if denomination % den:
            raise InvalidLiteralException("Too many decimal places: %s" % numstring, expr.args[0])
        sub = num * denomination // den
    elif args[0].typ.is_literal:
        if args[0].value <= 0:
            raise InvalidLiteralException("Negative wei value not allowed", expr)
        sub = ['mul', args[0].value, denomination]
    elif args[0].typ.typ == 'uint256':
        sub = ['mul', args[0], denomination]
    else:
        sub = ['div', ['mul', args[0], denomination], DECIMAL_DIVISOR]

    return LLLnode.from_list(sub, typ=BaseType('uint256', {'wei': 1}), location=None, pos=getpos(expr))


zero_value = LLLnode.from_list(0, typ=BaseType('uint256', {'wei': 1}))


@signature('address', 'bytes', outsize='num_literal', gas='uint256', value=Optional('uint256', zero_value))
def raw_call(expr, args, kwargs, context):
    to, data = args
    gas, value, outsize = kwargs['gas'], kwargs['value'], kwargs['outsize']
    if context.is_constant:
        raise ConstancyViolationException("Cannot make calls from a constant function", expr)
    if value != zero_value:
        enforce_units(value.typ, get_keyword(expr, 'value'),
                        BaseType('uint256', {'wei': 1}))
    placeholder = context.new_placeholder(data.typ)
    placeholder_node = LLLnode.from_list(placeholder, typ=data.typ, location='memory')
    copier = make_byte_array_copier(placeholder_node, data, pos=getpos(expr))
    output_placeholder = context.new_placeholder(ByteArrayType(outsize))
Beispiel #27
0
                                          expr)
        sub = ['mul', value.value, denom_divisor]
    elif value.typ.typ == 'uint256':
        sub = ['mul', value, denom_divisor]
    else:
        sub = ['div', ['mul', value, denom_divisor], DECIMAL_DIVISOR]

    return LLLnode.from_list(
        sub,
        typ=BaseType('uint256', {'wei': 1}),
        location=None,
        pos=getpos(expr),
    )


zero_value = LLLnode.from_list(0, typ=BaseType('uint256', {'wei': 1}))
false_value = LLLnode.from_list(0, typ=BaseType('bool', is_literal=True))


@signature(
    'address',
    'bytes',
    outsize='num_literal',
    gas='uint256',
    value=Optional('uint256', zero_value),
    delegate_call=Optional('bool', false_value),
)
def raw_call(expr, args, kwargs, context):
    to, data = args
    gas, value, outsize, delegate_call = (
        kwargs['gas'],
Beispiel #28
0
def send(expr, args, kwargs, context):
    to, value = args
    if context.is_constant:
        raise ConstancyViolationException("Cannot send ether inside a constant function!", expr)
    enforce_units(value.typ, expr.args[1], BaseType('uint256', {'wei': 1}))
    return LLLnode.from_list(['assert', ['call', 0, to, value, 0, 0, 0, 0]], typ=None, pos=getpos(expr))
Beispiel #29
0
def bitwise_or(expr, args, kwargs, context):
    return LLLnode.from_list(['or', args[0], args[1]],
                             typ=BaseType('uint256'),
                             pos=getpos(expr))
Beispiel #30
0
def _storage_element_getter(index):
    return LLLnode.from_list(
        ['sload', ['add', ['sha3_32', '_sub'], ['add', 1, index]]],
        typ=BaseType('int128'),
    )