Beispiel #1
0
    file_sep = r'/'
log_save_Path = Result_save_Path + file_sep[0] + 'log'
model_save_Path = Result_save_Path + file_sep[0] + 'model'

os.system('mkdir ' + log_save_Path)
os.system('mkdir ' + model_save_Path)
# 开始训练:一下代码由main改变而来,但是不需要保存模型

if __name__ == "__main__":
    # prepare container:准备网络输入输出容器 暂时测试新getbatch函数,所以注释掉了
    # data_input_c = np.zeros([batch_size] + data_input_shape + [1], dtype=np.float32)  # net input container
    # label_input_c = np.zeros([batch_size] + label_shape)

    # 构建网络并compile
    # d_model_1 = vgg16_w_3d(use_bias_flag=True,classes=2)
    d_model = resnet_or(use_bias_flag=False, classes=2)
    # d_model_1 = resnext(classes=2, use_bias_flag=True)
    # d_model_1 = SparseNetImageNet121(classes = 2,activation='softmax',dropout_rate = 0.5)

    # d_model_1 = se_dense_net(nb_layers=[6, 12, 24, 16], growth_rate=32, nb_filter=64, bottleneck=True, reduction=0.0, dropout_rate=None, subsample_initial_block=True)

    if multi_gpu_mode:
        d_model = multi_gpu_model(d_model, gpus=gpu_munum)
    # d_model.compile(optimizer=adam(lr=init_lr), loss='categorical_crossentropy', metrics=[y_t, y_pre, Acc])
    d_model.compile(optimizer=SGD(lr=init_lr, momentum=0.9),
                    loss='categorical_crossentropy',
                    metrics=[y_t, y_pre, Acc])
    # pause()  # identify
    # print(d_model.summary())  # view net
    # pause()  # identify
    # extra param initialization:初始化一些用来记录和显示的参数
Beispiel #2
0
import keras.backend as K
from w_resnet import resnet_nobn, se_resnet, resnet_or
import keras.backend as K

# step2: import extra model finished

# step2: import extra model finished

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))

# 構建網絡
model = resnet_or(use_bias_flag=True, classes=2)
# model.compile(optimizer=SGD(lr=1e-6, momentum=0.9), loss='binary_crossentropy')
# 構建輸入
data_input_c = np.zeros([1, 280, 280, 16, 1], dtype=np.float32)
H5_file = h5py.File(r'/data/@data_liaoxiao/4test/22_1.h5', 'r')
batch_x = H5_file['data'][:]
batch_y = H5_file['label3'][:]
H5_file.close()
batch_x = np.transpose(batch_x, (1, 2, 0))
data_input_c[0, :, :, :, 0] = batch_x[:, :, :]

# 保存或加載權重
# pre = model.predict_on_batch(data_input_c)
# model.save('G:\qweqweqweqwe\model.h5')
model.load_weights(
    filepath=
os.system('mkdir '+log_save_Path)
os.system('mkdir '+model_save_Path)
os.system('mkdir '+test_log_save_path)
os.system('mkdir '+ver_log_save_path)
# 开始训练:一下代码由main改变而来,但是不需要保存模型


if __name__ == "__main__":
    # prepare container:准备网络输入输出容器 暂时测试新getbatch函数,所以注释掉了
    # data_input_c = np.zeros([batch_size] + data_input_shape + [1], dtype=np.float32)  # net input container
    # label_input_c = np.zeros([batch_size] + label_shape)


    # 构建网络并compile
    # d_model_1 = vgg16_w_3d(use_bias_flag=True,classes=2)
    d_model = resnet_or(use_bias_flag=False,classes=2,inputshape=data_input_shape)
    # d_model_1 = resnext(classes=2, use_bias_flag=True)
    # d_model_1 = SparseNetImageNet121(classes = 2,activation='softmax',dropout_rate = 0.5)

    # d_model_1 = se_dense_net(nb_layers=[6, 12, 24, 16], growth_rate=32, nb_filter=64, bottleneck=True, reduction=0.0, dropout_rate=None, subsample_initial_block=True)


    if multi_gpu_mode:
        d_model = multi_gpu_model(d_model, gpus=gpu_munum)
    d_model.compile(optimizer=adam(lr=init_lr), loss=categorical_crossentropy, metrics=[y_t, y_pre, Acc])
    # d_model.compile(optimizer=SGD(lr=init_lr, momentum=0.9), loss=categorical_crossentropy, metrics=[y_t, y_pre, Acc])
    # d_model.compile(optimizer=SGD(lr=init_lr,momentum=0.9), loss='categorical_crossentropy', metrics=[y_t, y_pre, Acc])
    # pause()  # identify
    # print(d_model.summary())  # view net
    # pause()  # identify
    # extra param initialization:初始化一些用来记录和显示的参数