def test_raises_error_with_no_input_paths(self):
     input_reader_text_proto = """
   shuffle: false
   num_readers: 1
   load_instance_masks: true
 """
     input_reader_proto = input_reader_pb2.InputReader()
     text_format.Merge(input_reader_text_proto, input_reader_proto)
     with self.assertRaises(ValueError):
         dataset_builder.build(input_reader_proto, batch_size=1)
    def test_build_tf_record_input_reader(self):
        tf_record_path = self.create_tf_record()

        input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
        input_reader_proto = input_reader_pb2.InputReader()
        text_format.Merge(input_reader_text_proto, input_reader_proto)
        tensor_dict = dataset_builder.make_initializable_iterator(
            dataset_builder.build(input_reader_proto,
                                  batch_size=1)).get_next()

        with tf.train.MonitoredSession() as sess:
            output_dict = sess.run(tensor_dict)

        self.assertTrue(fields.InputDataFields.groundtruth_instance_masks
                        not in output_dict)
        self.assertEquals((1, 4, 5, 3),
                          output_dict[fields.InputDataFields.image].shape)
        self.assertAllEqual(
            [[2]], output_dict[fields.InputDataFields.groundtruth_classes])
        self.assertEquals(
            (1, 1, 4),
            output_dict[fields.InputDataFields.groundtruth_boxes].shape)
        self.assertAllEqual(
            [0.0, 0.0, 1.0, 1.0],
            output_dict[fields.InputDataFields.groundtruth_boxes][0][0])
    def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
        tf_record_path = self.create_tf_record()

        input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
        input_reader_proto = input_reader_pb2.InputReader()
        text_format.Merge(input_reader_text_proto, input_reader_proto)

        def one_hot_class_encoding_fn(tensor_dict):
            tensor_dict[
                fields.InputDataFields.groundtruth_classes] = tf.one_hot(
                    tensor_dict[fields.InputDataFields.groundtruth_classes] -
                    1,
                    depth=3)
            return tensor_dict

        tensor_dict = dataset_builder.make_initializable_iterator(
            dataset_builder.build(
                input_reader_proto,
                transform_input_data_fn=one_hot_class_encoding_fn,
                batch_size=2)).get_next()

        with tf.train.MonitoredSession() as sess:
            output_dict = sess.run(tensor_dict)

        self.assertAllEqual([2, 1, 4, 5], output_dict[
            fields.InputDataFields.groundtruth_instance_masks].shape)
    def test_build_tf_record_input_reader_and_load_instance_masks(self):
        tf_record_path = self.create_tf_record()

        input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
        input_reader_proto = input_reader_pb2.InputReader()
        text_format.Merge(input_reader_text_proto, input_reader_proto)
        tensor_dict = dataset_builder.make_initializable_iterator(
            dataset_builder.build(input_reader_proto,
                                  batch_size=1)).get_next()

        with tf.train.MonitoredSession() as sess:
            output_dict = sess.run(tensor_dict)
        self.assertAllEqual((1, 1, 4, 5), output_dict[
            fields.InputDataFields.groundtruth_instance_masks].shape)
    def test_sample_one_of_n_shards(self):
        tf_record_path = self.create_tf_record(num_examples=4)

        input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      sample_1_of_n_examples: 2
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
        input_reader_proto = input_reader_pb2.InputReader()
        text_format.Merge(input_reader_text_proto, input_reader_proto)
        tensor_dict = dataset_builder.make_initializable_iterator(
            dataset_builder.build(input_reader_proto,
                                  batch_size=1)).get_next()

        with tf.train.MonitoredSession() as sess:
            output_dict = sess.run(tensor_dict)
            self.assertAllEqual(['0'],
                                output_dict[fields.InputDataFields.source_id])
            output_dict = sess.run(tensor_dict)
            self.assertEquals(['2'],
                              output_dict[fields.InputDataFields.source_id])
Beispiel #6
0
 def get_next(config):
     return dataset_builder.make_initializable_iterator(
         dataset_builder.build(config)).get_next()