def main():
    n_samples = 1024
    # Ruido vermelho
    S3 = powernoise(2, n_samples)

    # Caos, usado para gerar o sinal S7
    rho = 3.85
    a0 = 0.001
    S4 = logistic(rho, a0, n_samples)

    # Soma os sinais e normalizae modo que <A>=0 e std=1
    S7 = pre.standardize(S3 + S4)

    # Sinal gerado pelo pmodel
    S8 = pmodel(noValues=n_samples, p=0.52, slope=-1.66)

    data = S8

    z = np.linspace(0, 1024, 1024)

    data_norm = waipy.normalize(data)
    result = waipy.cwt(data_norm,
                       1,
                       1,
                       0.125,
                       2,
                       4 / 0.125,
                       0.72,
                       6,
                       mother='h',
                       name='S8')
    waipy.wavelet_plot('S8', z, data_norm, 0.03125, result)
def main():
    '''
	d = np.genfromtxt(INFILE).T
	time, data = d
	'''

    fs, data = wavfile.read(INFILE)
    plt.plot(data)
    # plt.show()

    data = data[10000:11000]
    # data = scipy.signal.resample(data, len(data)//4)
    # time = np.arange(0, len(data), 1./fs)
    time = np.arange(len(data))

    data = waipy.normalize(data)
    result = waipy.cwt(data,
                       1,
                       1,
                       0.25,
                       2,
                       4 / 0.25,
                       alpha,
                       6,
                       mother='Morlet')
    waipy.wavelet_plot()

    wavelet(time, data, True)
    raw_input('')
 def plot_wavelet(self):
     d_obs = self.d_obs
     d_mod = self.d_mod
     d_t_obs = self.d_t_obs
     """ plot data wavelet """
     scores = []
     for j, site in enumerate(self.sitename):
         print('Process on Wavelet_' + ''.join(site) + '_No.' + str(j) +
               '!')
         fig3 = plt.figure(figsize=(8, 8))
         # ax3 = fig6.add_subplot(1, 2, 1)
         # fig3, ax3 = plt.subplots()
         data = d_obs[j, :].compressed()
         time_data = d_t_obs[~d_obs[j, :].mask]
         # time_data = d_t_obs
         result = waipy.cwt(data,
                            1,
                            1,
                            0.125,
                            2,
                            4 / 0.125,
                            0.72,
                            6,
                            mother='Morlet',
                            name='Data')
         waipy.wavelet_plot('Data', time_data, data, 0.03125, result, fig3)
         fig3.savefig(self.filedir + self.variable + '/' + ''.join(site) +
                      '_Wavelet_' + self.variable + '.png')
         for m in range(len(d_mod)):
             fig4 = plt.figure(figsize=(8, 8))
             data = d_mod[m][j, :][~d_obs[j, :].mask] - d_obs[
                 j, :].compressed()
             # time_data = d_mod[m][j, :]
             result = waipy.cwt(data,
                                1,
                                1,
                                0.125,
                                2,
                                4 / 0.125,
                                0.72,
                                6,
                                mother='Morlet',
                                name='Data')
             waipy.wavelet_plot('Data', time_data, data, 0.03125, result,
                                fig4)
             fig4.savefig(self.filedir + self.variable + '/' +
                          ''.join(site) + 'model' + str(m) + '_wavelet_' +
                          self.variable + '.png')
         plt.close('all')
     return scores
Beispiel #4
0
def Plot_Wavelet(obs, mod, site_id):
    print('Process on Wavelet ' + 'No.' + str(site_id) + '!')
    time_data = mod.time
    data = (obs.extractDatasites(lat=obs.lat, lon=obs.lat)).data[:, site_id]
    y = (mod.extractDatasites(lat=obs.lat, lon=obs.lat)).data[:, site_id]
    fig3 = plt.figure(figsize=(8, 8))
    result = waipy.cwt(data,
                       1,
                       1,
                       0.125,
                       2,
                       4 / 0.125,
                       0.72,
                       6,
                       mother='Morlet',
                       name='Obs')
    ax1, ax2, ax3, ax5 = waipy.wavelet_plot('Obs',
                                            time_data,
                                            data,
                                            0.03125,
                                            result,
                                            fig3,
                                            unit=obs.unit)

    change_x_tick(mod, site_id, ax2)
Beispiel #5
0
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
import waipy

datasets = (['data1.dat', 'SAR', 1800], ['data2.dat', 'BIK',
                                         1864], ['data3.dat', 'VUS', 1609])

dt = 1
units = 'mm'
for d, name, t0 in datasets:
    data = np.loadtxt(d)
    N = data.size
    time = np.arange(0, N) * dt + t0
    label = 'Precipitation data {}'.format(name)
    data_norm = waipy.normalize(data)
    alpha = abs(np.corrcoef(data_norm[0:-1], data_norm[1:])[0, 1])
    result = waipy.cwt(data_norm,
                       1,
                       1,
                       0.25,
                       2,
                       7 / 0.25,
                       alpha,
                       6,
                       mother='Morlet',
                       name=name)
    waipy.wavelet_plot(label, time, data_norm, 1.0e-6, result)
 def plot_wavelet(self):
     d_obs = self.d_obs
     d_mod = self.d_mod
     d_t_obs = self.d_t_obs
     """ plot data wavelet """
     scores = []
     for j, site in enumerate(self.sitename):
         if self.sitename.mask[j]:
             continue
         print('Process on Wavelet_' + site + '_No.' + str(j) + '!')
         data = d_obs[j, :].compressed()
         fig3 = plt.figure(figsize=(8, 8))
         if len(data) > 0:
             time_data = d_t_obs[~d_obs[j, :].mask]
             # time_data = d_t_obs
             result = waipy.cwt(data,
                                1,
                                1,
                                0.125,
                                2,
                                4 / 0.125,
                                0.72,
                                6,
                                mother='Morlet',
                                name='Obs')
             waipy.wavelet_plot('Obs',
                                time_data,
                                data,
                                0.03125,
                                result,
                                fig3,
                                unit=self.d_unit_obs)
             # plt.tight_layout()
         for m in range(len(d_mod)):
             fig4 = plt.figure(figsize=(8, 8))
             data2 = d_mod[m][j, :][~d_obs[j, :].mask]
             data = data2.compressed() - d_obs[
                 j, :].compressed()[~data2.mask]
             if len(data) > 0:
                 result = waipy.cwt(data,
                                    1,
                                    1,
                                    0.125,
                                    2,
                                    4 / 0.125,
                                    0.72,
                                    6,
                                    mother='Morlet',
                                    name='Obs - Mod' + str(m + 1))
                 waipy.wavelet_plot('Obs - Mod' + str(m + 1),
                                    time_data[~data2.mask],
                                    data,
                                    0.03125,
                                    result,
                                    fig4,
                                    unit=self.d_unit_obs,
                                    m=m)
                 # plt.tight_layout()
             fig4.savefig(self.filedir + self.variable + '/' + site +
                          'model' + str(m) + '_wavelet_' + self.variable +
                          '.png',
                          bbox_inches='tight')
         fig3.savefig(self.filedir + self.variable + '/' + site +
                      '_Wavelet_' + self.variable + '.png',
                      bbox_inches='tight')
         plt.close('all')
     return scores
Beispiel #7
0
import waipy
import numpy as np


z = np.linspace(0,2048,2048)
x = np.sin(50*np.pi*z)
y = np.cos(50*np.pi*z)

data_norm = waipy.normalize(x)
result = waipy.cwt(data_norm, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 
                   mother='Morlet',name='x')
waipy.wavelet_plot('Sine', z, data_norm, 0.03125, result)

data_norm1 = waipy.normalize(y)
result1 = waipy.cwt(data_norm1, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 
                    mother='Morlet',name='y')
waipy.wavelet_plot('Cosine', z, data_norm1, 0.03125, result1)

cross_power, coherence, phase_angle = waipy.cross_wavelet(result['wave'], 
                                                          result1['wave'])
waipy.plot_cross('Crosspower sine and cosine', cross_power, phase_angle, 
                 z, result, result1)
Beispiel #8
0
import waipy
import numpy as np

x = np.linspace(0, 100, 100)
y1 = np.random.rand(100)  # Generation of the Random Signal 1
y2 = np.random.rand(100)  # Generation of the Random Signal 2

data_norm = waipy.normalize(y1)
data_norm1 = waipy.normalize(y2)

result = waipy.cwt(data_norm, 1, 1, 0.25, 2, 4/0.25, 0.72, 6, 
                   mother='Morlet', name='x')
result1 = waipy.cwt(data_norm1, 1, 1, 0.25, 2, 4/0.25, 0.72, 6, 
                    mother='Morlet', name='y')

waipy.wavelet_plot('y1-random-signal', x, data_norm, 0.03125, result)
waipy.wavelet_plot('y2-random-signal', x, data_norm1, 0.03125, result1)

cross_power, coherence, phase_angle = waipy.cross_wavelet(result['wave'], 
                                                          result1['wave'])
waipy.plot_cross('Crosspower of y1 and y2', cross_power, phase_angle, x, 
                 result, result1)

Beispiel #9
0
##############################################################################
################################### MAIN #####################################
##############################################################################

namefile = "daily-cases-covid-19.csv"
l = pd.read_csv(namefile)
codes = list(set(l["Entity"]))
codes = codes[1:]
l = l.set_index("Entity")
values = []
countries = ["Brazil", "India", "Iran", "South Africa", "Egypt"]
for i in codes:
    y = list(l.filter(like=i, axis=0)["Daily confirmed cases (cases)"])
    if i in countries:
        result = waipy.cwt(y, 1, 1, 0.125, 2, 4 / 0.125, 0.72, 6, 'DOG', "x")
        waipy.wavelet_plot(i, range(len(y)), y, 0.03125, result, savefig=True)
    if len(y) > 50:
        alfa, xdfa, ydfa, reta = funcs.dfa1d(y, 1)
        freqs, power, xdata, ydata, amp, index, powerlaw, INICIO, FIM = funcs.psd(
            y)
        values.append([
            funcs.variance(y),
            funcs.skewness(y),
            funcs.kurtosis(y), alfa, index,
            mfdfa.makemfdfa(y), i
        ])

skew2 = []
alfa = []
kurt = []
index = []
Beispiel #10
0
    p = p[np.nonzero(p)]
    c = counts[np.nonzero(counts)] 
    log_p = np.log10(p)
    a = (log_p[np.argmax(c)] - log_p[np.argmin(c)]) / (np.max(c) - np.min(c)) 
    b = log_Prob[0]
    y = b * np.power(10, (a*counts))
    
    
    """ Plotagem """
    
    plt.clf()
    plt.scatter(np.log10(counts), y, marker=".", color="blue")
    plt.title('SOC', fontsize = 16) 
    plt.xlabel('log(ni)')
    plt.ylabel('log(Yi)') 
    plt.grid()
    plt.show() 

for i in range(1):
    x,p=pmodel("Endogenous")
    SOC(p)

result=waipy.cwt(p, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 'DOG', "x")
waipy.wavelet_plot("Endogenous series", x, p, 0.03125, result, True)

for i in range(1):
    x,p=pmodel("Exogenous")
    SOC(p)
result=waipy.cwt(p, 1, 1, 0.125, 2, 4/0.125, 0.72, 6, 'DOG', "x")
waipy.wavelet_plot("Exogenous series", x, p, 0.03125, result, True)
Beispiel #11
0
from waipy import wavelet_plot

tick_spacing = 4

data = np.genfromtxt("data/batch_4.txt", delimiter=",")[20000:30000]
time = (data[:, 0])#/1000

x = 9.8*(data[:, 1])/2048
y = 9.8*(data[:, 2])/2048
z = 9.8*((data[:, 3]))/2048 # -- factory offset of this particular accelerometer!

var = z
dt = 5

data_norm = waipy.normalize(var)
alpha = np.corrcoef(data_norm[0:-1], data_norm[1:])[0,1]; 
result = waipy.cwt(data_norm, dt, 0, 0.0625, 1, 36, alpha, 6, mother='Morlet', name="name")
waipy.wavelet_plot("img/batch_4_z_start_osc", time, data_norm, 0.03125, result); 


"""
    CONTINUOUS WAVELET TRANSFORM
    pad = 1         # pad the time series with zeroes (recommended)
    dj = 0.25       # this will do 4 sub-octaves per octave
    s0 = 2*dt       # this says start at a scale of 6 months
    j1 = 7/dj       # this says do 7 powers-of-two with dj sub-octaves each
    lag1 = 0.72     # lag-1 autocorrelation for red noise background
    param = 6
    mother = 'Morlet'
"""
Beispiel #12
0
Yticks = 2 ** np.arange(np.ceil(np.log2(period.min())),
                        np.ceil(np.log2(period.max())))
ax.set_yticks(np.log2(Yticks))
ax.set_yticklabels(Yticks)
ax.invert_yaxis()
ylim = ax.get_ylim()
ax.set_ylim(ylim[0], -1)
cbar = plt.colorbar(cf)

plt.show()       
    
#%%

data_norm = waipy.normalize(arsi.NDVI)
result = waipy.cwt(data_norm, 1, 1, 0.125, 2, 4/0.125, 0.72, 6,mother='Morlet',name='X')
waipy.wavelet_plot('Wavelet Signal', arsi.index.values, data_norm, 0.03125, result)

#%%
    
    #Augmented Dickey-Fuller test
    #conclusion: all data are stationary
    
    result = adfuller(arsi.NDVI)
    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])
    print('Critical Values:')
    for key, value in result[4].items():
        print('\t%s: %.3f' % (key, value)) 

    result = adfuller(arsi.ET)
    print('ADF Statistic: %f' % result[0])
Beispiel #13
0
data_norm1 = waipy.normalize(y2)

result = waipy.cwt(data_norm,
                   1,
                   1,
                   0.25,
                   2,
                   4 / 0.25,
                   0.72,
                   6,
                   mother='Morlet',
                   name='x')
result1 = waipy.cwt(data_norm1,
                    1,
                    1,
                    0.25,
                    2,
                    4 / 0.25,
                    0.72,
                    6,
                    mother='Morlet',
                    name='y')

waipy.wavelet_plot('y1-random-signal', x, data_norm, 0.03125, result)
waipy.wavelet_plot('y2-random-signal', x, data_norm1, 0.03125, result1)

cross_power, coherence, phase_angle = waipy.cross_wavelet(
    result['wave'], result1['wave'])
waipy.plot_cross('Crosspower of y1 and y2', cross_power, phase_angle, x,
                 result, result1)