Beispiel #1
0
def born(model, src_coords, rcv_coords, wavelet, space_order=8,
         save=False, q=None, free_surface=False, isic=False, ws=None):
    """
    Low level propagator, to be used through `interface.py`
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    # Setting adjoint wavefield
    u = wavefield(model, space_order, save=save, nt=wavelet.shape[0])
    ul = wavefield(model, space_order, name="l")

    # Extended source
    q = q or wf_as_src(u, w=0)
    q = extented_src(model, ws, wavelet, q=q)

    # Set up PDE expression and rearrange
    pde, fsu = wave_kernel(model, u, fs=free_surface, q=q)
    pdel, fsul = wave_kernel(model, ul, q=lin_src(model, u, isic=isic), fs=free_surface)

    # Setup source and receiver
    geom_expr, _, _ = src_rec(model, u, src_coords=src_coords, wavelet=wavelet)
    geom_exprl, _, rcvl = src_rec(model, ul, rec_coords=rcv_coords, nt=wavelet.shape[0])

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + pdel + geom_exprl + fsu + fsul,
                  subs=subs, name="born"+name(model))
    op(**op_kwargs(model, fs=free_surface))
    # Output
    return rcvl.data, u
def forward(model,
            src_coords,
            rcv_coords,
            wavelet,
            dt=None,
            space_order=8,
            save=False,
            q=0,
            grad=False,
            u=None,
            return_op=False):
    """
    Compute forward wavefield u = A(m)^{-1}*f and related quantities (u(xrcv))
    """
    # Setting adjoint wavefield
    u = u or wavefield(model, space_order, save=save, nt=wavelet.shape[0])

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, u, q=q)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model,
                                u,
                                src_coords=src_coords,
                                rec_coords=rcv_coords,
                                wavelet=wavelet)
    # extras expressions
    extras = []
    if grad:
        gradm = Function(name="gradm", grid=model.grid)
        v = wavefield(model,
                      space_order,
                      save=True,
                      nt=wavelet.shape[0],
                      fw=False)
        w = Constant(name="w")
        extras = grad_expr(gradm, u, v, w=w)
    # Create operator and run
    subs = model.spacing_map
    op = create_op(pde + geom_expr + extras,
                   subs=subs,
                   name="forward" + name(model))
    if return_op:
        return op
    op()

    # Output
    if save:
        return rcv.data, u
    else:
        return rcv.data, None
Beispiel #3
0
def born(model,
         src_coords,
         rcv_coords,
         wavelet,
         space_order=8,
         save=False,
         q=None,
         isic=False,
         ws=None,
         t_sub=1):
    """
    Low level propagator, to be used through `interface.py`
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    nt = wavelet.shape[0]
    # Setting wavefield
    u = wavefield(model, space_order, save=save, nt=nt, t_sub=t_sub)
    ul = wavefield(model, space_order, name="l")

    # Expression for saving wavefield if time subsampling is used
    u_save, eq_save = wavefield_subsampled(model, u, nt, t_sub)

    # Extended source
    q = q or wf_as_src(u, w=0)
    q = extented_src(model, ws, wavelet, q=q)

    # Set up PDE expression and rearrange
    pde, tmpu = wave_kernel(model, u, q=q)
    pdel, tmpul = wave_kernel(model, ul, q=lin_src(model, u, isic=isic))

    # Setup source and receiver
    geom_expr, _, _ = src_rec(model, u, src_coords=src_coords, wavelet=wavelet)
    geom_exprl, _, rcvl = src_rec(model,
                                  ul,
                                  rec_coords=rcv_coords,
                                  nt=wavelet.shape[0])

    # Create operator and run
    subs = model.spacing_map
    op = Operator(tmpu + tmpul + pde + geom_expr + geom_exprl + pdel + eq_save,
                  subs=subs,
                  name="born" + name(model),
                  opt=opt_op(model, no_ms=ws is not None))

    summary = op()

    # Output
    return rcvl, (u_save if t_sub > 1 else u), summary
Beispiel #4
0
    def adjoint_y_run(self,
                      y,
                      src_coords,
                      rcv_coords,
                      weight_fun_pars=None,
                      save=False):
        v = wavefield(self.model,
                      self.space_order,
                      save=save,
                      nt=y.shape[0],
                      fw=False)
        kwargs = wf_kwargs(v)
        rcv = Receiver(name="rcv",
                       grid=self.model.grid,
                       ntime=y.shape[0],
                       coordinates=src_coords)
        src = PointSource(name="src",
                          grid=self.model.grid,
                          ntime=y.shape[0],
                          coordinates=rcv_coords)
        src.data[:, :] = y[:, :]

        adj = self.op_adj_y(weight_fun_pars=weight_fun_pars, save=save)

        i = Dimension(name="i", )
        norm_v = Function(name="nvy2",
                          shape=(1, ),
                          dimensions=(i, ),
                          grid=self.model.grid)

        adj(src=src, rcv=rcv, nvy2=norm_v, **kwargs)

        return norm_v.data[0], rcv.data, v
Beispiel #5
0
 def forward_run(self,
                 wav,
                 src_coords,
                 rcv_coords,
                 save=False,
                 q=0,
                 v=None,
                 w=0,
                 grad=False):
     # Computing residual
     u = wavefield(self.model, self.space_order, save=save, nt=wav.shape[0])
     kwargs = wf_kwargs(u)
     rcv = Receiver(name="rcv",
                    grid=self.model.grid,
                    ntime=wav.shape[0],
                    coordinates=rcv_coords)
     src = PointSource(name="src",
                       grid=self.model.grid,
                       ntime=wav.shape[0],
                       coordinates=src_coords)
     src.data[:] = wav[:]
     fwd = self.op_fwd(save=save, q=q, grad=grad)
     if grad:
         w = Constant(name="w", value=w)
         gradm = Function(name="gradm", grid=self.model.grid)
         kwargs.update({as_tuple(v)[0].name: as_tuple(v)[0]})
         kwargs.update({w.name: w, gradm.name: gradm})
     fwd(rcv=rcv, src=src, **kwargs)
     if grad:
         return rcv.data, u, gradm
     return rcv.data, u
Beispiel #6
0
def adjoint(model, y, src_coords, rcv_coords, space_order=8, q=0,
            save=False, free_surface=False, ws=None):
    """
    Low level propagator, to be used through `interface.py`
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    # Number of time steps
    nt = as_tuple(q)[0].shape[0] if y is None else y.shape[0]

    # Setting adjoint wavefield
    v = wavefield(model, space_order, save=save, nt=nt, fw=False)

    # Set up PDE expression and rearrange
    pde, fs = wave_kernel(model, v, q=q, fw=False, fs=free_surface)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model, v, src_coords=rcv_coords, nt=nt,
                                rec_coords=src_coords, wavelet=y, fw=False)

    # Extended source
    wsrc, ws_expr = extended_src_weights(model, ws, v)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + ws_expr + fs,
                  subs=subs, name="adjoint"+name(model))
    op(**op_kwargs(model, fs=free_surface))

    # Output
    if wsrc:
        return wsrc
    return getattr(rcv, 'data', None), v
Beispiel #7
0
def gradient(model, residual, rcv_coords, u, return_op=False, space_order=8, t_sub=1,
             w=None, free_surface=False, freq=None, dft_sub=None, isic=True):
    """
    Low level propagator, to be used through `interface.py`
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    # Setting adjoint wavefieldgradient
    v = wavefield(model, space_order, fw=False)

    # Set up PDE expression and rearrange
    pde, fs = wave_kernel(model, v, fw=False, fs=free_surface)

    # Setup source and receiver
    geom_expr, _, _ = src_rec(model, v, src_coords=rcv_coords,
                              wavelet=residual, fw=False)

    # Setup gradient wrt m
    gradm = Function(name="gradm", grid=model.grid)
    g_expr = grad_expr(gradm, u, v, model, w=w, freq=freq, dft_sub=dft_sub, isic=isic)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + g_expr + fs,
                  subs=subs, name="gradient"+name(model))

    if return_op:
        return op, gradm, v
    op(**op_kwargs(model, fs=free_surface))

    # Output
    return gradm.data
Beispiel #8
0
def gradient(model,
             residual,
             rcv_coords,
             u,
             return_op=False,
             space_order=8,
             w=None,
             freq=None,
             dft_sub=None,
             isic=False):
    """
    Low level propagator, to be used through `interface.py`
    Compute the action of the adjoint Jacobian onto a residual J'* δ d.
    """
    # Setting adjoint wavefieldgradient
    v = wavefield(model, space_order, fw=False)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, v, fw=False)

    # Setup source and receiver
    geom_expr, _, _ = src_rec(model,
                              v,
                              src_coords=rcv_coords,
                              wavelet=residual,
                              fw=False)

    # Setup gradient wrt m
    gradm = Function(name="gradm", grid=model.grid)
    g_expr = grad_expr(gradm,
                       u,
                       v,
                       model,
                       w=w,
                       freq=freq,
                       dft_sub=dft_sub,
                       isic=isic)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + g_expr,
                  subs=subs,
                  name="gradient" + name(model),
                  opt=opt_op(model))
    try:
        op.cfunction
    except:
        op = Operator(pde + geom_expr + g_expr,
                      subs=subs,
                      name="gradient" + name(model),
                      opt='advanced')
        op.cfunction
    if return_op:
        return op, gradm, v

    summary = op()

    # Output
    return gradm, summary
Beispiel #9
0
def forward(model,
            src_coords,
            rcv_coords,
            wavelet,
            space_order=8,
            save=False,
            q=None,
            return_op=False,
            freq_list=None,
            dft_sub=None,
            ws=None,
            t_sub=1,
            **kwargs):
    """
    Low level propagator, to be used through `interface.py`
    Compute forward wavefield u = A(m)^{-1}*f and related quantities (u(xrcv))
    """
    # Number of time steps
    nt = as_tuple(q)[0].shape[0] if wavelet is None else wavelet.shape[0]

    # Setting forward wavefield
    u = wavefield(model, space_order, save=save, nt=nt, t_sub=t_sub)

    # Expression for saving wavefield if time subsampling is used
    u_save, eq_save = wavefield_subsampled(model, u, nt, t_sub)

    # Add extended source
    q = q or wf_as_src(u, w=0)
    q = extented_src(model, ws, wavelet, q=q)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, u, q=q)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model,
                                u,
                                src_coords=src_coords,
                                nt=nt,
                                rec_coords=rcv_coords,
                                wavelet=wavelet)

    # On-the-fly Fourier
    dft, dft_modes = otf_dft(u, freq_list, model.critical_dt, factor=dft_sub)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + dft + geom_expr + eq_save,
                  subs=subs,
                  name="forward" + name(model),
                  opt=opt_op(model))
    op.cfunction
    if return_op:
        return op, u, rcv

    summary = op()

    # Output
    return rcv, dft_modes or (u_save if t_sub > 1 else u), summary
Beispiel #10
0
def adjoint(model,
            y,
            src_coords,
            rcv_coords,
            space_order=8,
            q=0,
            save=False,
            ws=None,
            norm_v=False,
            w_fun=None):
    """
    Low level propagator, to be used through `interface.py`
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    # Number of time steps
    nt = as_tuple(q)[0].shape[0] if y is None else y.shape[0]

    # Setting adjoint wavefield
    v = wavefield(model, space_order, save=save, nt=nt, fw=False)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, v, q=q, fw=False)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model,
                                v,
                                src_coords=rcv_coords,
                                nt=nt,
                                rec_coords=src_coords,
                                wavelet=y,
                                fw=False)

    # Extended source
    wsrc, ws_expr = extended_src_weights(model, ws, v)

    # Wavefield norm
    nv_t, nv_s = ([], [])
    if norm_v:
        weights = weight_fun(w_fun, model, src_coords)
        norm_v, (nv_t, nv_s) = weighted_norm(v, weight=weights)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + ws_expr + nv_t + geom_expr + nv_s,
                  subs=subs,
                  name="adjoint" + name(model),
                  opt=opt_op(model))

    # Run operator
    summary = op()

    # Output
    if wsrc:
        return wsrc, summary
    if norm_v:
        return rcv, v, norm_v.data[0], summary
    return rcv, v, summary
def gradient(model,
             residual,
             rcv_coords,
             u,
             dt=None,
             space_order=8,
             w=1,
             return_op=False,
             w_symb=False):
    """
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    if w_symb:
        w = Constant(name="w", value=w)
    # Setting adjoint wavefield
    v = wavefield(model, space_order, fw=False)
    u = u or wavefield(model, space_order, save=True, nt=residual.shape[0])

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, v, fw=False)

    # Setup source and receiver
    geom_expr, _, _ = src_rec(model,
                              v,
                              src_coords=rcv_coords,
                              wavelet=residual,
                              fw=False)

    # Setup gradient wrt m
    gradm = Function(name="gradm", grid=model.grid)
    g_expr = grad_expr(gradm, u, v, w=w)

    # Create operator and run
    subs = model.spacing_map
    op = create_op(pde + g_expr + geom_expr,
                   subs=subs,
                   name="gradient" + name(model))
    if return_op:
        return op
    op()

    # Output
    return gradm.data
Beispiel #12
0
def forward_grad(model,
                 src_coords,
                 rcv_coords,
                 wavelet,
                 v,
                 space_order=8,
                 q=None,
                 ws=None,
                 isic=False,
                 w=None,
                 freq=None,
                 **kwargs):
    """
    Low level propagator, to be used through `interface.py`
    Compute forward wavefield u = A(m)^{-1}*f and related quantities (u(xrcv))
    """
    # Number of time steps
    nt = as_tuple(q)[0].shape[0] if wavelet is None else wavelet.shape[0]

    # Setting forward wavefield
    u = wavefield(model, space_order, save=False)

    # Add extended source
    q = q or wf_as_src(u, w=0)
    q = extented_src(model, ws, wavelet, q=q)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, u, q=q)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model,
                                u,
                                src_coords=src_coords,
                                nt=nt,
                                rec_coords=rcv_coords,
                                wavelet=wavelet)

    # Setup gradient wrt m
    gradm = Function(name="gradm", grid=model.grid)
    g_expr = grad_expr(gradm, v, u, model, w=w, isic=isic, freq=freq)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + g_expr,
                  subs=subs,
                  name="forward_grad" + name(model),
                  opt=opt_op(model))

    summary = op()

    # Output
    return rcv, gradm, summary
def adjoint_y(model,
              y,
              src_coords,
              rcv_coords,
              weight_fun_pars=None,
              dt=None,
              space_order=8,
              save=False,
              return_op=False):
    """
    Compute adjoint wavefield v = adjoint(F(m))*y
    and related quantities (||v||_w, v(xsrc))
    """
    # Setting adjoint wavefield
    v = wavefield(model, space_order, save=save, nt=y.shape[0], fw=False)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, v, fw=False)

    # Setup source and receiver
    geom_expr, _, rcv = src_rec(model,
                                v,
                                src_coords=rcv_coords,
                                rec_coords=src_coords,
                                wavelet=y,
                                fw=False)

    # Setup ||v||_w computation
    weights = weight_fun(weight_fun_pars, model, src_coords)
    norm_v, norm_v_expr = weighted_norm(v, weight=weights)
    # Create operator and run
    subs = model.spacing_map
    op = create_op(pde + geom_expr + norm_v_expr,
                   subs=subs,
                   name="adjoint_y" + name(model))
    if return_op:
        return op
    op()

    # Output
    if save:
        return norm_v.data[0], rcv.data, v
    else:
        return norm_v.data[0], rcv.data, None
def objTWRIdual_devito(model, y, src_coords, rcv_coords, wav,
                       dat, Filter, eps, mode="eval", objfact=np.float32(1),
                       comp_alpha=True, grad_corr=False, weight_fun_pars=None,
                       dt=None, space_order=8):
    """
    Evaluate TWRI objective functional/gradients for current (m, y)
    """
    # Setting time sampling
    if dt is None:
        dt = model.critical_dt

    # Computing y in reduced mode (= residual) if not provided
    u0 = None
    y_was_None = y is None
    if y_was_None:
        u0rcv, u0 = forward(model, src_coords, rcv_coords, wav, dt=dt,
                            space_order=space_order, save=(mode == "grad") and grad_corr)
        y = applyfilt(dat-u0rcv, Filter)
        PTy = applyfilt_transp(y, Filter)
    else:
        PTy = y
    # Normalization constants
    nx = np.float32(model.vp.size)
    nt, nr = np.float32(y.shape)
    etaf = npla.norm(wav.reshape(-1)) / np.sqrt(nt * nx)
    etad = npla.norm(applyfilt(dat, Filter).reshape(-1)) / np.sqrt(nt * nr)

    # Compute wavefield vy = adjoint(F(m))*Py
    norm_vPTy2, vPTy_src, vPTy = adjoint_y(model, PTy, src_coords, rcv_coords,
                                           weight_fun_pars=weight_fun_pars, dt=dt,
                                           space_order=space_order, save=(mode == "grad"))

    # <PTy, d-F(m)*f> = <PTy, d>-<adjoint(F(m))*PTy, f>
    PTy_dot_r = (np.dot(PTy.reshape(-1), dat.reshape(-1)) -
                 np.dot(vPTy_src.reshape(-1), wav.reshape(-1)))

    # ||y||
    norm_y = npla.norm(y.reshape(-1))

    # Optimal alpha
    c1 = etaf**np.float32(2) / (np.float32(4) * etad**np.float32(2) * nx * nt)
    c2 = np.float32(1) / (etad * nr * nt)
    c3 = eps / np.sqrt(nr * nt)
    alpha = compute_optalpha(c1*norm_vPTy2, c2*PTy_dot_r, c3*norm_y,
                             comp_alpha=comp_alpha)

    # Lagrangian evaluation
    fun = (alpha * (-alpha * c1 * norm_vPTy2 + c2 * PTy_dot_r) -
           np.abs(alpha) * c3 * norm_y)
    # Gradient computation
    if mode == "grad":
        # Set up extebded source
        w = 2.0 * c1 / c2 * alpha
        if weight_fun_pars is not None:
            w /= weight_fun(weight_fun_pars, model, src_coords)**2
        Q = wf_as_src(vPTy, w=w)

        # Setup gradient wrt m
        u = wavefield(model, space_order)
        gradm = Function(name="gradm", grid=model.grid)
        g_exp = grad_expr(gradm, u, vPTy, w=alpha * c2)
        rcv, _ = forward(model, src_coords, rcv_coords, wav, dt=dt,
                         space_order=space_order, q=Q, extra_expr=g_exp, u=u)

        # Compute gradient wrt y
        if not y_was_None or grad_corr:
            norm_y = npla.norm(y)
            grady_data = alpha * c2 * applyfilt(dat - rcv.data, Filter)
            if norm_y != 0:
                grady_data -= np.abs(alpha) * c3 * y / norm_y

        # Correcting for reduced gradient
        if not y_was_None or (y_was_None and not grad_corr):
            gradm_data = gradm.data
        else:
            gradm_corr = gradient(model, applyfilt_transp(grady_data, Filter), rcv_coords,
                                  u0, dt=dt, space_order=space_order, w=1)
            # Reduced gradient post-processing
            gradm_data = gradm.data + gradm_corr.data

    # Return output

    if mode == "eval":
        return fun / objfact
    elif mode == "grad" and y_was_None:
        return fun / objfact, gradm_data / objfact
    elif mode == "grad" and not y_was_None:
        return fun / objfact, gradm_data / objfact, grady_data / objfact
Beispiel #15
0
def born(model,
         src_coords,
         rcv_coords,
         wavelet,
         space_order=8,
         save=False,
         q=None,
         return_op=False,
         isic=False,
         freq_list=None,
         dft_sub=None,
         ws=None,
         t_sub=1,
         nlind=False):
    """
    Low level propagator, to be used through `interface.py`
    Compute linearized wavefield U = J(m)* δ m
    and related quantities.
    """
    nt = wavelet.shape[0]
    # Setting wavefield
    u = wavefield(model, space_order, save=save, nt=nt, t_sub=t_sub)
    ul = wavefield(model, space_order, name="l")

    # Expression for saving wavefield if time subsampling is used
    u_save, eq_save = wavefield_subsampled(model, u, nt, t_sub)

    # Extended source
    q = q or wf_as_src(u, w=0)
    q = extented_src(model, ws, wavelet, q=q)

    # Set up PDE expression and rearrange
    pde = wave_kernel(model, u, q=q)
    if model.dm == 0:
        pdel = []
    else:
        pdel = wave_kernel(model, ul, q=lin_src(model, u, isic=isic))
    # Setup source and receiver
    geom_expr, _, rcvnl = src_rec(model,
                                  u,
                                  rec_coords=rcv_coords if nlind else None,
                                  src_coords=src_coords,
                                  wavelet=wavelet)
    geom_exprl, _, rcvl = src_rec(model, ul, rec_coords=rcv_coords, nt=nt)

    # On-the-fly Fourier
    dft, dft_modes = otf_dft(u, freq_list, model.critical_dt, factor=dft_sub)

    # Create operator and run
    subs = model.spacing_map
    op = Operator(pde + geom_expr + geom_exprl + pdel + dft + eq_save,
                  subs=subs,
                  name="born" + name(model),
                  opt=opt_op(model))
    op.cfunction
    outrec = (rcvl, rcvnl) if nlind else rcvl
    if return_op:
        return op, u, outrec

    summary = op()

    # Output
    return outrec, dft_modes or (u_save if t_sub > 1 else u), summary