Source_PolState = np.zeros((len(Source), 2), complex)
for i in range(len(Source)):
    Source_PolState[i, 0] = E_in[0]
    Source_PolState[i, 1] = E_in[1]

# Reconstruct parameters

setup = wo.waveorder_microscopy((Ns, Ms),
                                lambda_illu,
                                ps,
                                NA_obj,
                                NA_illu,
                                z_defocus,
                                n_media=n_media,
                                cali=cali,
                                bg_option=bg_option,
                                A_matrix=A_matrix,
                                phase_deconv='3D',
                                inc_recon='3D',
                                illu_mode='Arbitrary',
                                Source=Source,
                                Source_PolState=Source_PolState,
                                use_gpu=use_gpu,
                                gpu_id=gpu_id)

# ### Writer setup
uPTI_file_name = 'uPTI_subFOVs.zarr'
writer = WaveorderWriter(output_path, hcs=False, hcs_meta=None, verbose=True)
writer.create_zarr_root(uPTI_file_name)

data_shape = (1, 9, N_defocus, int(Ns), int(Ms))
Beispiel #2
0
# ### Load data
# Load simulations
file_name = '/data_sm/home/lihao/project/Polscope/Simulation/3D_Pol_Phase/uPTI_repo_demo/3D_PODT_simulation.npz'
array_loaded = np.load(file_name)
list_of_array_names = sorted(array_loaded)
for array_name in list_of_array_names:
    globals()[array_name] = array_loaded[array_name]

print(list_of_array_names)
N, M, L = I_meas.shape


# ### Refractive index reconstruction
z_defocus = (np.r_[:L]-L//2)*psz
chi = 0.1*2*np.pi
setup = wo.waveorder_microscopy((N,M), lambda_illu, ps, NA_obj, NA_illu, z_defocus, chi,
                                n_media = n_media, phase_deconv='3D', pad_z=10)

H_re_vis = fftshift(setup.H_re)
wo.plot_multicolumn([np.real(H_re_vis)[:,:,L//2], np.transpose(np.real(H_re_vis)[N//2,:,:]),
                     np.imag(H_re_vis)[:,:,L//2], np.transpose(np.imag(H_re_vis)[N//2,:,:])],
                    num_col=2, size=8, set_title=True,
                    titles=['$xy$-slice of Re{$H_{re}$} at $u_z=0$', '$xz$-slice of Re{$H_{re}$} at $u_y=0$',
                            '$xy$-slice of Im{$H_{re}$} at $u_z=0$', '$xz$-slice of Im{$H_{re}$} at $u_y=0$'], colormap='jet')
plt.show()

H_im_vis = fftshift(setup.H_im)
wo.plot_multicolumn([np.real(H_im_vis)[:,:,L//2], np.transpose(np.real(H_im_vis)[N//2,:,:]),
                     np.imag(H_im_vis)[:,:,L//2], np.transpose(np.imag(H_im_vis)[N//2,:,:])],
                    num_col=2, size=8, set_title=True,
                    titles=['$xy$-slice of Re{$H_{im}$} at $u_z=0$', '$xz$-slice of Re{$H_{im}$} at $u_y=0$',
                            '$xy$-slice of Im{$H_{im}$} at $u_z=0$', '$xz$-slice of Im{$H_{im}$} at $u_y=0$'], colormap='jet')
Beispiel #3
0
                                      lambda_illu * fxx,
                                      lambda_illu * fyy,
                                      subsampled_NA=0.1)
plt.figure(figsize=(10, 10))
plt.imshow(fftshift(Source_discrete), cmap='gray')
plt.show()
print(np.sum(Source_discrete))

z_defocus = (np.r_[:L] - L // 2) * psz
chi = 0.1 * 2 * np.pi
setup = wo.waveorder_microscopy((N, M),
                                lambda_illu,
                                ps,
                                NA_obj,
                                NA_illu,
                                z_defocus,
                                chi,
                                n_media=n_media,
                                phase_deconv='3D',
                                illu_mode='Arbitrary',
                                Source=Source_cont)

simulator = wo.waveorder_microscopy_simulator((N, M),
                                              lambda_illu,
                                              ps,
                                              NA_obj,
                                              NA_illu,
                                              z_defocus,
                                              chi,
                                              n_media=n_media,
                                              illu_mode='Arbitrary',
Beispiel #4
0
for array_name in list_of_array_names:
    globals()[array_name] = array_loaded[array_name]

print(list_of_array_names)

# ### Reconstruction of Stokes parameters and anisotropy
_, N, M, L = I_meas.shape
cali = False
bg_option = 'global'

setup = wo.waveorder_microscopy((N, M),
                                lambda_illu,
                                ps,
                                NA_obj,
                                NA_illu,
                                z_defocus,
                                chi,
                                n_media=n_media,
                                phase_deconv='2D',
                                bire_in_plane_deconv='2D',
                                illu_mode='BF')
S_image_recon = setup.Stokes_recon(I_meas)
S_image_tm = setup.Stokes_transform(S_image_recon)
Recon_para = setup.Polarization_recon(
    S_image_tm)  # Without accounting for diffraction

wo.plot_multicolumn(
    np.array([
        Recon_para[0, :, :, L // 2], Recon_para[1, :, :, L // 2],
        Recon_para[2, :, :, L // 2], Recon_para[3, :, :, L // 2]
    ]),
_, _, N, M, L = I_meas.shape
cali = False
bg_option = 'global'
use_gpu = True
gpu_id = 0


A_matrix = 0.5*np.array([[1, 1, 0], \
                         [1, 0, 1], \
                         [1, -1, 0], \
                         [1, 0, -1]])


setup = wo.waveorder_microscopy((N,M), lambda_illu, ps, NA_obj, NA_illu, z_defocus, chi, \
                                n_media=n_media, cali=cali, \
                                A_matrix=A_matrix, inc_recon='3D', \
                                illu_mode='Arbitrary', Source = Source_cont, Source_PolState=Source_PolState,\
                                pad_z=5, use_gpu=use_gpu, gpu_id=gpu_id)

### Illumination patterns used
wo.plot_multicolumn(fftshift(Source_cont, axes=(1, 2)),
                    origin='lower',
                    num_col=5,
                    size=5)
plt.show()

## Reconstruct Stokes images and visualize them as a function of illumination pattern
S_image_recon = setup.Stokes_recon(I_meas)

S_bg_mean_0 = np.mean(S_image_recon[0, :, :, :, :],
                      axis=(1, 2, 3))[:, np.newaxis, np.newaxis, np.newaxis]