Beispiel #1
0
def generate_plates(seed, world_name, output_dir, width, height,
                    num_plates=10):
    """
    Eventually this method should be invoked when generation is called at
    asked to stop at step "plates", it should not be a different operation
    :param seed:
    :param world_name:
    :param output_dir:
    :param width:
    :param height:
    :param num_plates:
    :return:
    """
    elevation, plates = generate_plates_simulation(seed, width, height,
                                                   num_plates=num_plates)

    world = World(world_name, Size(width, height), seed, GenerationParameters(num_plates, -1.0, "plates"))
    world.set_elevation(numpy.array(elevation).reshape(height, width), None)
    world.set_plates(numpy.array(plates, dtype=numpy.uint16).reshape(height, width))

    # Generate images
    filename = '%s/plates_%s.png' % (output_dir, world_name)
    draw_simple_elevation_on_file(world, filename, None)
    print("+ plates image generated in '%s'" % filename)
    geo.center_land(world)
    filename = '%s/centered_plates_%s.png' % (output_dir, world_name)
    draw_simple_elevation_on_file(world, filename, None)
    print("+ centered plates image generated in '%s'" % filename)
Beispiel #2
0
def _plates_simulation(name,
                       width,
                       height,
                       seed,
                       temps=[.874, .765, .594, .439, .366, .124],
                       humids=[.941, .778, .507, .236, 0.073, .014, .002],
                       gamma_curve=1.25,
                       curve_offset=.2,
                       num_plates=10,
                       ocean_level=1.0,
                       step=Step.full(),
                       verbose=get_verbose()):
    e_as_array, p_as_array = generate_plates_simulation(seed,
                                                        width,
                                                        height,
                                                        num_plates=num_plates,
                                                        verbose=verbose)

    world = World(name, Size(width, height), seed,
                  GenerationParameters(num_plates, ocean_level, step), temps,
                  humids, gamma_curve, curve_offset)
    world.set_elevation(numpy.array(e_as_array).reshape(height, width), None)
    world.set_plates(
        numpy.array(p_as_array, dtype=numpy.uint16).reshape(height, width))
    return world
Beispiel #3
0
def _plates_simulation(name, width, height, seed, temps=
                       [.874, .765, .594, .439, .366, .124], humids=
                       [.941, .778, .507, .236, 0.073, .014, .002], gamma_curve=1.25,
                       curve_offset=.2, num_plates=10, ocean_level=1.0,
                       step=Step.full(), verbose=get_verbose()):
    e_as_array, p_as_array = generate_plates_simulation(seed, width, height,
                                                        num_plates=num_plates,
                                                        verbose=verbose)

    world = World(name, Size(width, height), seed,
                  GenerationParameters(num_plates, ocean_level, step),
                  temps, humids, gamma_curve, curve_offset)
    world.set_elevation(numpy.array(e_as_array).reshape(height, width), None)
    world.set_plates(numpy.array(p_as_array, dtype=numpy.uint16).reshape(height, width))
    return world
Beispiel #4
0
def generate_plates(seed,
                    world_name,
                    output_dir,
                    width,
                    height,
                    num_plates=10):
    """
    Eventually this method should be invoked when generation is called at
    asked to stop at step "plates", it should not be a different operation
    :param seed:
    :param world_name:
    :param output_dir:
    :param width:
    :param height:
    :param num_plates:
    :return:
    """
    elevation, plates = generate_plates_simulation(seed,
                                                   width,
                                                   height,
                                                   num_plates=num_plates)

    world = World(world_name, Size(width, height), seed,
                  GenerationParameters(num_plates, -1.0, "plates"))
    world.set_elevation(numpy.array(elevation).reshape(height, width), None)
    world.set_plates(
        numpy.array(plates, dtype=numpy.uint16).reshape(height, width))

    # Generate images
    filename = '%s/plates_%s.png' % (output_dir, world_name)
    draw_simple_elevation_on_file(world, filename, None)
    print("+ plates image generated in '%s'" % filename)
    geo.center_land(world)
    filename = '%s/centered_plates_%s.png' % (output_dir, world_name)
    draw_simple_elevation_on_file(world, filename, None)
    print("+ centered plates image generated in '%s'" % filename)
def load_world_to_hdf5(filename):
    f = h5py.File(filename, libver="latest", mode="r")

    w = World(
        f["general/name"].value,
        Size(f["general/width"].value, f["general/height"].value),
        f["generation_params/seed"].value,
        GenerationParameters(
            f["generation_params/n_plates"].value,
            f["generation_params/ocean_level"].value,
            Step.get_by_name(f["generation_params/step"].value),
        ),
    )

    # Elevation
    e = numpy.array(f["elevation/data"])
    e_th = [
        ("sea", f["elevation/thresholds/sea"].value),
        ("plain", f["elevation/thresholds/plain"].value),
        ("hill", f["elevation/thresholds/hill"].value),
        ("mountain", None),
    ]
    w.set_elevation(e, e_th)

    # Plates
    w.set_plates(numpy.array(f["plates"]))

    # Ocean
    w.set_ocean(numpy.array(f["ocean"]))
    w.set_sea_depth(numpy.array(f["sea_depth"]))

    # Biome
    if "biome" in f.keys():
        biome_data = []
        for y in range(w.height):
            row = []
            for x in range(w.width):
                value = f["biome"][y, x]
                row.append(biome_index_to_name(value))
            biome_data.append(row)
        biome = numpy.array(biome_data, dtype=object)
        w.set_biome(biome)

    if "humidity" in f.keys():
        data, quantiles = _from_hdf5_matrix_with_quantiles(f["humidity"])
        w.set_humidity(data, quantiles)

    if "irrigation" in f.keys():
        w.set_irrigation(numpy.array(f["irrigation"]))

    if "permeability" in f.keys():
        p = numpy.array(f["permeability/data"])
        p_th = [
            ("low", f["permeability/thresholds/low"].value),
            ("med", f["permeability/thresholds/med"].value),
            ("hig", None),
        ]
        w.set_permeability(p, p_th)

    if "watermap" in f.keys():
        data = numpy.array(f["watermap/data"])
        thresholds = {}
        thresholds["creek"] = f["watermap/thresholds/creek"].value
        thresholds["river"] = f["watermap/thresholds/river"].value
        thresholds["main river"] = f["watermap/thresholds/mainriver"].value
        w.set_watermap(data, thresholds)

    if "precipitation" in f.keys():
        p = numpy.array(f["precipitation/data"])
        p_th = [
            ("low", f["precipitation/thresholds/low"].value),
            ("med", f["precipitation/thresholds/med"].value),
            ("hig", None),
        ]
        w.set_precipitation(p, p_th)

    if "temperature" in f.keys():
        t = numpy.array(f["temperature/data"])
        t_th = [
            ("polar", f["temperature/thresholds/polar"].value),
            ("alpine", f["temperature/thresholds/alpine"].value),
            ("boreal", f["temperature/thresholds/boreal"].value),
            ("cool", f["temperature/thresholds/cool"].value),
            ("warm", f["temperature/thresholds/warm"].value),
            ("subtropical", f["temperature/thresholds/subtropical"].value),
            ("tropical", None),
        ]
        w.set_temperature(t, t_th)

    if "icecap" in f.keys():
        w.set_icecap(numpy.array(f["icecap"]))

    if "lake_map" in f.keys():
        m = numpy.array(f["lake_map"])
        w.set_lakemap(m)

    if "river_map" in f.keys():
        m = numpy.array(f["river_map"])
        w.set_rivermap(m)

    f.close()

    return w
Beispiel #6
0
def load_world_to_hdf5(filename):
    f = h5py.File(filename, libver='latest', mode='r')

    w = World(
        f['general/name'].value,
        Size(f['general/width'].value, f['general/height'].value),
        f['generation_params/seed'].value,
        GenerationParameters(
            f['generation_params/n_plates'].value,
            f['generation_params/ocean_level'].value,
            Step.get_by_name(f['generation_params/step'].value)))

    # Elevation
    e = numpy.array(f['elevation/data'])
    e_th = [('sea', f['elevation/thresholds/sea'].value),
            ('plain', f['elevation/thresholds/plain'].value),
            ('hill', f['elevation/thresholds/hill'].value), ('mountain', None)]
    w.set_elevation(e, e_th)

    # Plates
    w.set_plates(numpy.array(f['plates']))

    # Ocean
    w.set_ocean(numpy.array(f['ocean']))
    w.set_sea_depth(numpy.array(f['sea_depth']))

    # Biome
    if 'biome' in f.keys():
        biome_data = []
        for y in range(w.height):
            row = []
            for x in range(w.width):
                value = f['biome'][y, x]
                row.append(biome_index_to_name(value))
            biome_data.append(row)
        biome = numpy.array(biome_data, dtype=object)
        w.set_biome(biome)

    if 'humidity' in f.keys():
        data, quantiles = _from_hdf5_matrix_with_quantiles(f['humidity'])
        w.set_humidity(data, quantiles)

    if 'irrigation' in f.keys():
        w.set_irrigation(numpy.array(f['irrigation']))

    if 'permeability' in f.keys():
        p = numpy.array(f['permeability/data'])
        p_th = [('low', f['permeability/thresholds/low'].value),
                ('med', f['permeability/thresholds/med'].value), ('hig', None)]
        w.set_permeability(p, p_th)

    if 'watermap' in f.keys():
        data = numpy.array(f['watermap/data'])
        thresholds = {}
        thresholds['creek'] = f['watermap/thresholds/creek'].value
        thresholds['river'] = f['watermap/thresholds/river'].value
        thresholds['main river'] = f['watermap/thresholds/mainriver'].value
        w.set_watermap(data, thresholds)

    if 'precipitation' in f.keys():
        p = numpy.array(f['precipitation/data'])
        p_th = [('low', f['precipitation/thresholds/low'].value),
                ('med', f['precipitation/thresholds/med'].value),
                ('hig', None)]
        w.set_precipitation(p, p_th)

    if 'temperature' in f.keys():
        t = numpy.array(f['temperature/data'])
        t_th = [('polar', f['temperature/thresholds/polar'].value),
                ('alpine', f['temperature/thresholds/alpine'].value),
                ('boreal', f['temperature/thresholds/boreal'].value),
                ('cool', f['temperature/thresholds/cool'].value),
                ('warm', f['temperature/thresholds/warm'].value),
                ('subtropical', f['temperature/thresholds/subtropical'].value),
                ('tropical', None)]
        w.set_temperature(t, t_th)

    if 'icecap' in f.keys():
        w.set_icecap(numpy.array(f['icecap']))

    if 'lake_map' in f.keys():
        m = numpy.array(f['lake_map'])
        w.set_lakemap(m)

    if 'river_map' in f.keys():
        m = numpy.array(f['river_map'])
        w.set_rivermap(m)

    f.close()

    return w