def test_bootstrap_tn10p(self, tasmin_series, use_dask): self.bootstrap_testor( tasmin_series, 2, lambda x, y, z: tn10p(x, y, freq="MS", bootstrap=z), use_dask=use_dask, )
def test_doy_interpolation(self): pytest.importorskip('xarray', '0.11.4') # Just a smoke test fn_clim = os.path.join( TESTS_DATA, 'CanESM2_365day', 'tasmin_day_CanESM2_rcp85_r1i1p1_na10kgrid_qm-moving-50bins-detrend_2095.nc' ) fn = os.path.join( TESTS_DATA, 'HadGEM2-CC_360day', 'tasmin_day_HadGEM2-CC_rcp85_r1i1p1_na10kgrid_qm-moving-50bins-detrend_2095.nc' ) with xr.open_dataset(fn_clim) as ds: t10 = percentile_doy(ds.tasmin.isel(lat=0, lon=0), per=.1) with xr.open_dataset(fn) as ds: xci.tn10p(ds.tasmin.isel(lat=0, lon=0), t10, freq='MS')
def test_tn10p_simple(self, tas_series): i = 366 tas = np.array(range(i)) tas = tas_series(tas, start="1/1/2000") t10 = percentile_doy(tas, per=0.1) # create cold spell in june tas[175:180] = 1 out = xci.tn10p(tas, t10, freq="MS") assert out[0] == 1 assert out[5] == 5