Beispiel #1
0
    def test_mon_U(self, mon_series, series, mon_triangular, kind, name):
        """
        Train on
        hist: U
        ref: U + monthly cycle

        Predict on hist to get ref
        """
        u = np.random.rand(10000)

        # Define distributions
        xd = uniform(loc=2, scale=0.1)
        yd = uniform(loc=4, scale=0.1)
        noise = uniform(loc=0, scale=1e-7)

        # Generate random numbers
        x = xd.ppf(u)
        y = yd.ppf(u) + noise.ppf(u)

        # Test train
        hist = sim = series(x, name)
        ref = mon_series(y, name)

        QM = EmpiricalQuantileMapping(kind=kind,
                                      group="time.month",
                                      nquantiles=5)
        QM.train(ref, hist)
        p = QM.adjust(sim)
        mqm = QM.ds.af.mean(dim="quantiles")
        expected = apply_correction(mon_triangular, 2, kind)
        np.testing.assert_array_almost_equal(mqm, expected, 1)

        # Test predict
        np.testing.assert_array_almost_equal(p, ref, 2)
    def test_simple(self, c_thresh, q_thresh, frac, power):
        n = 45 * 365

        def gen_testdata(c, s):
            base = np.clip(norm.rvs(loc=0, scale=s, size=(n, )), 0, None)
            qv = np.quantile(base[base > 1], q_thresh)
            base[base > qv] = genpareto.rvs(c,
                                            loc=qv,
                                            scale=s,
                                            size=base[base > qv].shape)
            return xr.DataArray(
                base,
                dims=("time", ),
                coords={
                    "time":
                    xr.cftime_range("1990-01-01", periods=n, calendar="noleap")
                },
                attrs={
                    "units": "mm/day",
                    "thresh": qv
                },
            )

        ref = jitter_under_thresh(gen_testdata(-0.1, 2), 1e-3)
        hist = jitter_under_thresh(gen_testdata(-0.1, 2), 1e-3)
        sim = gen_testdata(-0.15, 2.5)

        EQM = EmpiricalQuantileMapping(group="time.dayofyear",
                                       nquantiles=15,
                                       kind="*")
        EQM.train(ref, hist)
        scen = EQM.adjust(sim)

        EX = ExtremeValues(c_thresh, q_thresh=q_thresh)
        EX.train(ref, hist)

        qv = (ref.thresh + hist.thresh) / 2
        np.testing.assert_allclose(EX.ds.fit_params, [-0.1, qv, 2],
                                   atol=0.5,
                                   rtol=0.1)
        np.testing.assert_allclose(EX.ds.thresh, qv, atol=0.15, rtol=0.01)

        scen2 = EX.adjust(scen, sim, frac=frac, power=power)

        # What to test???
        # Test if extreme values of sim are still extreme
        exval = sim > EX.ds.thresh
        assert (scen2.where(exval) >
                EX.ds.thresh).sum() > (scen.where(exval) > EX.ds.thresh).sum()
        # ONLY extreme values have been touched (but some might not have been modified)
        assert (((scen != scen2) | exval) == exval).all()
Beispiel #3
0
    def test_quantiles(self, series, kind, name):
        """Train on
        hist: U
        ref: Normal

        Predict on hist to get ref
        """
        u = np.random.rand(10000)

        # Define distributions
        xd = uniform(loc=10, scale=1)
        yd = norm(loc=12, scale=1)

        # Generate random numbers with u so we get exact results for comparison
        x = xd.ppf(u)
        y = yd.ppf(u)

        # Test train
        hist = sim = series(x, name)
        ref = series(y, name)
        QM = EmpiricalQuantileMapping(
            kind=kind,
            group="time",
            nquantiles=50,
        )
        QM.train(ref, hist)
        p = QM.adjust(sim, interp="linear")

        q = QM.ds.coords["quantiles"]
        expected = get_correction(xd.ppf(q), yd.ppf(q), kind)

        # Results are not so good at the endpoints
        np.testing.assert_array_almost_equal(QM.ds.af[2:-2], expected[2:-2], 1)

        # Test predict
        # Accept discrepancies near extremes
        middle = (x > 1e-2) * (x < 0.99)
        np.testing.assert_array_almost_equal(p[middle], ref[middle], 1)
    def test_dask_julia(self):

        dsim = open_dataset("sdba/CanESM2_1950-2100.nc").chunk()
        dref = open_dataset("sdba/ahccd_1950-2013.nc").chunk()
        dexp = open_dataset("sdba/adjusted_external.nc")

        ref = convert_units_to(dref.sel(time=slice("1950", "2009")).pr, "mm/d")
        hist = convert_units_to(
            dsim.sel(time=slice("1950", "2009")).pr, "mm/d")

        quantiles = np.linspace(0.01, 0.99, num=50)

        EQM = EmpiricalQuantileMapping(group=Grouper("time.dayofyear",
                                                     window=31),
                                       nquantiles=quantiles)

        with xr.set_options(keep_attrs=True):
            ref = ref + uniform_noise_like(ref, low=1e-6, high=1e-3)
            hist = hist + uniform_noise_like(hist, low=1e-6, high=1e-3)

        EQM.train(ref, hist)
        scen = EQM.adjust(hist, interp="linear", extrapolation="constant")

        EX = ExtremeValues(cluster_thresh="1 mm/day", q_thresh=0.97)
        EX.train(ref, hist)
        new_scen = EX.adjust(scen, hist, frac=0.000000001)

        new_scen.load()

        exp_scen = dexp.extreme_values_julia
        xr.testing.assert_allclose(
            new_scen.where(new_scen != scen).transpose("time", "location"),
            exp_scen.where(new_scen != scen).transpose("time", "location"),
            atol=0.005,
            rtol=2e-3,
        )