Beispiel #1
0
  def setUp(self):
    # Seeding
    numpy.random.seed(2)
    random.seed(2)
    layer_dim = 64
    xnmt.events.clear()
    ParamManager.init_param_col()
    self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim)
    self.segment_composer = SumComposer()

    self.src_reader = CharFromWordTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.charvocab"))
    self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab"))
    self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5)

    baseline = Linear(input_dim=layer_dim, output_dim=1)
    policy_network = Linear(input_dim=layer_dim, output_dim=2)
    self.poisson_prior = PoissonPrior(mu=3.3)
    self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior)
    self.conf_penalty = ConfidencePenalty()
    self.policy_gradient = PolicyGradient(input_dim=layer_dim,
                                          output_dim=2,
                                          baseline=baseline,
                                          policy_network=policy_network,
                                          z_normalization=True,
                                          conf_penalty=self.conf_penalty)
    self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1)
    self.segmenting_encoder = SegmentingSeqTransducer(
      embed_encoder = self.segment_encoder_bilstm,
      segment_composer =  self.segment_composer,
      final_transducer = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
      policy_learning = self.policy_gradient,
      eps_greedy = self.eps_greedy,
      length_prior = self.length_prior,
    )

    self.model = DefaultTranslator(
      src_reader=self.src_reader,
      trg_reader=self.trg_reader,
      src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      encoder=self.segmenting_encoder,
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                    rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim,
                                                             decoder_input_dim=layer_dim, yaml_path="decoder"),
                                    transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim,
                                                           aux_input_dim=layer_dim),
                                    scorer=Softmax(vocab_size=100, input_dim=layer_dim),
                                    trg_embed_dim=layer_dim,
                                    bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
    )
    event_trigger.set_train(True)

    self.layer_dim = layer_dim
    self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja"))
    self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en"))
    my_batcher = batchers.TrgBatcher(batch_size=3)
    self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
    dy.renew_cg(immediate_compute=True, check_validity=True)
 def __init__(self,
              word_vocab=None,
              embedding=None,
              ngram_size=4,
              vocab_size=32000,
              cache_id_pool=None,
              cache_word_table=None,
              char_vocab=Ref(Path("model.src_reader.vocab")),
              hidden_dim=Ref("exp_global.default_layer_dim"),
              param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)),
              bias_init=Ref("exp_global.bias_init", default=bare(ZeroInitializer))):
   super().__init__(word_vocab, vocab_size, cache_id_pool, cache_word_table)
   # Attributes
   if word_vocab is None:
     self.dict_entry = vocab_size+1
   else:
     self.dict_entry = len(word_vocab)
   self.char_vocab = char_vocab
   self.param_init = param_init
   self.bias_init = bias_init
   self.hidden_dim = hidden_dim
   self.word_vect = None
   # Word Embedding
   self.ngram_size = ngram_size
   self.embedding = self.add_serializable_component("embedding", embedding,
                                                     lambda: Linear(input_dim=self.dict_entry,
                                                                    output_dim=hidden_dim,
                                                                    param_init=param_init,
                                                                    bias_init=bias_init))
Beispiel #3
0
 def __init__(self, dy_model, input_dim, output_dim):
     self.L = Linear(input_dim,
                     output_dim,
                     dy_model,
                     bias=False,
                     param_init=LeCunUniformInitializer(),
                     bias_init=LeCunUniformInitializer())
     self.output_dim = output_dim
 def __init__(self,
              composers,
              hidden_dim=Ref("exp_global.default_layer_dim"),
              embedding=None,
              param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)),
              bias_init=Ref("exp_global.bias_init", default=bare(ZeroInitializer))):
   super().__init__()
   assert len(composers) > 1
   self.composers = composers
   self.embedding = self.add_serializable_component("embedding", embedding,
                                                     lambda: Linear(input_dim=len(composers)*hidden_dim,
                                                                    output_dim=hidden_dim,
                                                                    param_init=param_init,
                                                                    bias_init=bias_init))
Beispiel #5
0
  def __init__(self,
               baseline=None,
               evaluation_metric:metrics.SentenceLevelEvaluator = bare(metrics.FastBLEUEvaluator),
               search_strategy:SearchStrategy = bare(SamplingSearch),
               sample_length:int = 50,
               use_baseline:bool = False,
               inv_eval:bool = True,
               decoder_hidden_dim:int = Ref("exp_global.default_layer_dim")):
    self.inv_eval = inv_eval
    self.search_strategy = search_strategy
    self.evaluation_metric = evaluation_metric

    if use_baseline:
      self.baseline = self.add_serializable_component("baseline", baseline,
                                                      lambda: Linear(input_dim=decoder_hidden_dim, output_dim=1))
    else:
      self.baseline = None
Beispiel #6
0
  def __init__(self,
               word_vocab=None,
               ngram_size=4,
               src_vocab=Ref(Path("model.src_reader.vocab")),
               hidden_dim=Ref("exp_global.default_layer_dim"),
               word_ngram=None,
               vocab_size=None):
    super().__init__()
    if word_vocab is None:
      word_vocab = Vocab()
      dict_entry = vocab_size
    else:
      dict_entry = len(word_vocab)

    self.dict_entry = dict_entry
    self.src_vocab = src_vocab
    self.word_vocab = word_vocab
    self.ngram_size = ngram_size
    self.word_ngram = self.add_serializable_component("word_ngram", word_ngram,
                                                      lambda: Linear(input_dim=dict_entry,
                                                                     output_dim=hidden_dim))