Beispiel #1
0
 def test_gradient_checking(self):
     layer = Loss('binary_crossentropy')
     X = np.random.rand(5, 1)
     y = np.random.randint(0, high=2, size=(5, ))
     expected = approx_fprime(X, layer.forwardprop, y)
     got = layer.backprop(X, y)
     np.testing.assert_array_almost_equal(got, expected, decimal=5)
Beispiel #2
0
 def test_gradient_checking(self):
     layer = Loss('mse')
     X = np.random.rand(5, 1)
     y = np.random.rand(5, )
     expected = approx_fprime(X, layer.forwardprop, y)
     got = layer.backprop(X, y)
     np.testing.assert_array_almost_equal(got, expected, decimal=6)
Beispiel #3
0
 def test_gradient_checking(self):
     layer = Dropout(0.36)
     X = np.random.randn(5, 4)
     dout = np.random.randn(5, 4)
     layer.forwardprop(X, training=True)
     expected = approx_fprime(X, layer.forwardprop, True, False)
     got = layer.backprop(dout)
     np.testing.assert_array_almost_equal(got / dout, expected, decimal=6)
Beispiel #4
0
 def test_gradient_checking(self):
     layer = Activation('tanh')
     X = np.random.randn(5, 4)
     expected = approx_fprime(X, layer.activation.forwardprop)
     got = layer.activation.backprop(X)
     np.testing.assert_array_almost_equal(got, expected, decimal=5)