Beispiel #1
0
def plotDirections(aabb=(),mask=0,bins=20,numHist=True,noShow=False,sphSph=False):
	"""Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and
	(optional but default) histogram of number of interactions per body. If sphSph only sphere-sphere interactions are considered.

	:returns: If *noShow* is ``False``, displays the figure and returns nothing. If *noShow*, the figure object is returned without being displayed (works the same way as :yref:`yade.plot.plot`).
	"""
	import pylab,math
	from yade import utils
	for axis in [0,1,2]:
		d=utils.interactionAnglesHistogram(axis,mask=mask,bins=bins,aabb=aabb,sphSph=sphSph)
		fc=[0,0,0]; fc[axis]=1.
		subp=pylab.subplot(220+axis+1,polar=True);
		# 1.1 makes small gaps between values (but the column is a bit decentered)
		pylab.bar(d[0],d[1],width=math.pi/(1.1*bins),fc=fc,alpha=.7,label=['yz','xz','xy'][axis])
		#pylab.title(['yz','xz','xy'][axis]+' plane')
		pylab.text(.5,.25,['yz','xz','xy'][axis],horizontalalignment='center',verticalalignment='center',transform=subp.transAxes,fontsize='xx-large')
	if numHist:
		pylab.subplot(224,polar=False)
		nums,counts=utils.bodyNumInteractionsHistogram(aabb if len(aabb)>0 else utils.aabbExtrema())
		avg=sum([nums[i]*counts[i] for i in range(len(nums))])/(1.*sum(counts))
		pylab.bar(nums,counts,fc=[1,1,0],alpha=.7,align='center')
		pylab.xlabel('Interactions per body (avg. %g)'%avg)
		pylab.axvline(x=avg,linewidth=3,color='r')
		pylab.ylabel('Body count')
	if noShow: return pylab.gcf()
	else:
		pylab.ion()
		pylab.show()
Beispiel #2
0
def plotDirections(aabb=(),mask=0,bins=20,numHist=True,noShow=False,sphSph=False):
	"""Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and
	(optional but default) histogram of number of interactions per body. If sphSph only sphere-sphere interactions are considered for the 3 directions histograms.

	:returns: If *noShow* is ``False``, displays the figure and returns nothing. If *noShow*, the figure object is returned without being displayed (works the same way as :yref:`yade.plot.plot`).
	"""
	import pylab,math
	from yade import utils
	for axis in [0,1,2]:
		d=utils.interactionAnglesHistogram(axis,mask=mask,bins=bins,aabb=aabb,sphSph=sphSph)
		fc=[0,0,0]; fc[axis]=1.
		subp=pylab.subplot(220+axis+1,polar=True);
		# 1.1 makes small gaps between values (but the column is a bit decentered)
		pylab.bar(d[0],d[1],width=math.pi/(1.1*bins),fc=fc,alpha=.7,label=['yz','xz','xy'][axis])
		#pylab.title(['yz','xz','xy'][axis]+' plane')
		pylab.text(.5,.25,['yz','xz','xy'][axis],horizontalalignment='center',verticalalignment='center',transform=subp.transAxes,fontsize='xx-large')
	if numHist:
		pylab.subplot(224,polar=False)
		nums,counts=utils.bodyNumInteractionsHistogram(aabb if len(aabb)>0 else utils.aabbExtrema())
		avg=sum([nums[i]*counts[i] for i in range(len(nums))])/(1.*sum(counts))
		pylab.bar(nums,counts,fc=[1,1,0],alpha=.7,align='center')
		pylab.xlabel('Interactions per body (avg. %g)'%avg)
		pylab.axvline(x=avg,linewidth=3,color='r')
		pylab.ylabel('Body count')
	if noShow: return pylab.gcf()
	else:
		pylab.ion()
		pylab.show()
Beispiel #3
0
def estimateStress(strain,cutoff=0.):
	"""Use summed stored energy in contacts to compute macroscopic stress over the same volume, provided known strain."""
	# E=(1/2)σεAl # global stored energy
	# σ=EE/(.5εAl)=EE/(.5εV)
	from yade import utils
	dim=utils.aabbDim(cutoff,centers=False)
	return utils.elasticEnergy(utils.aabbExtrema(cutoff))/(.5*strain*dim[0]*dim[1]*dim[2])
Beispiel #4
0
def estimateStress(strain, cutoff=0.):
    """Use summed stored energy in contacts to compute macroscopic stress over the same volume, provided known strain."""
    # E=(1/2)σεAl # global stored energy
    # σ=EE/(.5εAl)=EE/(.5εV)
    from yade import utils
    dim = utils.aabbDim(cutoff, centers=False)
    return utils.elasticEnergy(
        utils.aabbExtrema(cutoff)) / (.5 * strain * dim[0] * dim[1] * dim[2])
Beispiel #5
0
#### controling parameters
packing='parallellepiped_10_persistentPlane30Deg'
smoothContact=True
jointFrict=radians(20)
jointDil=radians(0)
output='jointDip30_jointFrict20'
maxIter=10000

#### Import of the sphere assembly
def sphereMat(): return JCFpmMat(type=1,young=1e8,frictionAngle=radians(30),density=3000,poisson=0.3,tensileStrength=1e6,cohesion=1e6,jointNormalStiffness=1e7,jointShearStiffness=1e7,jointCohesion=1e6,jointFrictionAngle=jointFrict,jointDilationAngle=jointDil) ## Rq: density needs to be adapted as porosity of real rock is different to granular assembly due to difference in porosity (utils.sumForces(baseBodies,(0,1,0))/(Z*X) should be equal to Gamma*g*h with h=Y, g=9.82 and Gamma=2700 kg/m3
print "\n  In case of errors please look at README about generating parallellepiped_10_persistentPlane30Deg.spheres file\n"
O.bodies.append(ymport.text(packing+'.spheres',scale=1.,shift=Vector3(0,0,0),material=sphereMat))

## preprocessing to get dimensions of the packing
dim=utils.aabbExtrema()
dim=utils.aabbExtrema()
xinf=dim[0][0]
xsup=dim[1][0]
X=xsup-xinf
yinf=dim[0][1]
ysup=dim[1][1]
Y=ysup-yinf
zinf=dim[0][2]
zsup=dim[1][2]
Z=zsup-zinf

## preprocessing to get spheres dimensions
R=0
Rmax=0
numSpheres=0.
from __future__ import print_function
from yade import pack, utils, ymport, export

packing='parallellepiped_10'
DFN='persistentPlane30Deg'

############################ material definition
facetMat = O.materials.append(JCFpmMat(type=0,young=1,frictionAngle=radians(1),poisson=0.4,density=1))
def sphereMat(): return JCFpmMat(type=1,young=1,frictionAngle=radians(1),density=1,poisson=1,tensileStrength=1e6,cohesion=1e6,jointNormalStiffness=1,jointShearStiffness=1,jointTensileStrength=1e6,jointCohesion=1e6,jointFrictionAngle=1)

############################ Import of the sphere assembly
print("\n  In case of errors please look at README about generating parallellepiped_10.spheres file\n")
O.bodies.append(ymport.text(packing+'.spheres',scale=1,shift=Vector3(0,0,0),material=sphereMat)) #(-3,-4,-8)

#### some preprocessing (not mandatory)
dim=utils.aabbExtrema()
xinf=dim[0][0]
xsup=dim[1][0]
yinf=dim[0][1]
ysup=dim[1][1]
zinf=dim[0][2]
zsup=dim[1][2]

R=0
Rmax=0
numSpheres=0.
for o in O.bodies:
 if isinstance(o.shape,Sphere):
   o.shape.color=(0,0,1)
   numSpheres+=1
   R+=o.shape.radius
Beispiel #7
0

# make geom; the dimensions are hard-coded here; could be in param table if desired
# z-oriented hyperboloid, length 20cm, diameter 10cm, skirt 8cm
# using spheres 7mm of diameter
concreteId=O.materials.append(CpmMat(young=young,frictionAngle=frictionAngle,poisson=poisson,density=4800,sigmaT=sigmaT,crackOpening=crackOpening,epsCrackOnset=epsCrackOnset,G_over_E=G_over_E,isoPrestress=isoPrestress))

spheres=pack.randomDensePack(pack.inHyperboloid((0,0,-.5*specimenLength),(0,0,.5*specimenLength),.25*specimenLength,.17*specimenLength),spheresInCell=2000,radius=sphereRadius,memoizeDb='/tmp/triaxPackCache.sqlite',material=concreteId)
#spheres=pack.randomDensePack(pack.inAlignedBox((-.25*specimenLength,-.25*specimenLength,-.5*specimenLength),(.25*specimenLength,.25*specimenLength,.5*specimenLength)),spheresInCell=2000,radius=sphereRadius,memoizeDb='/tmp/triaxPackCache.sqlite')
O.bodies.append(spheres)
bb=utils.uniaxialTestFeatures()
negIds,posIds,axis,crossSectionArea=bb['negIds'],bb['posIds'],bb['axis'],bb['area']
O.dt=dtSafety*utils.PWaveTimeStep()
print 'Timestep',O.dt

mm,mx=[pt[axis] for pt in utils.aabbExtrema()]
coord_25,coord_50,coord_75=mm+.25*(mx-mm),mm+.5*(mx-mm),mm+.75*(mx-mm)
area_25,area_50,area_75=utils.approxSectionArea(coord_25,axis),utils.approxSectionArea(coord_50,axis),utils.approxSectionArea(coord_75,axis)

O.engines=[
	ForceResetter(),
	InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='is2aabb'),],sweepLength=.05*sphereRadius,nBins=5,binCoeff=5),
	InteractionLoop(
		[Ig2_Sphere_Sphere_Dem3DofGeom(distFactor=intRadius,label='ss2d3dg') if not scGeom else Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ss2sc')],
		[Ip2_CpmMat_CpmMat_CpmPhys()],
		[Law2_Dem3DofGeom_CpmPhys_Cpm(epsSoft=0) if not scGeom else Law2_ScGeom_CpmPhys_Cpm()],
	),
	NewtonIntegrator(damping=damping,label='damper'),
	CpmStateUpdater(realPeriod=1),
	UniaxialStrainer(strainRate=strainRateTension,axis=axis,asymmetry=0,posIds=posIds,negIds=negIds,crossSectionArea=crossSectionArea,blockDisplacements=False,blockRotations=False,setSpeeds=setSpeeds,label='strainer'),
	PyRunner(virtPeriod=1e-6/strainRateTension,realPeriod=1,command='addPlotData()',label='plotDataCollector',initRun=True),
Beispiel #8
0

# make geom; the dimensions are hard-coded here; could be in param table if desired
# z-oriented hyperboloid, length 20cm, diameter 10cm, skirt 8cm
# using spheres 7mm of diameter
concreteId=O.materials.append(CpmMat(young=young,frictionAngle=frictionAngle,poisson=poisson,density=4800,sigmaT=sigmaT,crackOpening=crackOpening,epsCrackOnset=epsCrackOnset,poisson=poisson,isoPrestress=isoPrestress))

spheres=pack.randomDensePack(pack.inHyperboloid((0,0,-.5*specimenLength),(0,0,.5*specimenLength),.25*specimenLength,.17*specimenLength),spheresInCell=2000,radius=sphereRadius,memoizeDb='/tmp/triaxPackCache.sqlite',material=concreteId)
#spheres=pack.randomDensePack(pack.inAlignedBox((-.25*specimenLength,-.25*specimenLength,-.5*specimenLength),(.25*specimenLength,.25*specimenLength,.5*specimenLength)),spheresInCell=2000,radius=sphereRadius,memoizeDb='/tmp/triaxPackCache.sqlite')
O.bodies.append(spheres)
bb=utils.uniaxialTestFeatures()
negIds,posIds,axis,crossSectionArea=bb['negIds'],bb['posIds'],bb['axis'],bb['area']
O.dt=dtSafety*utils.PWaveTimeStep()
print 'Timestep',O.dt

mm,mx=[pt[axis] for pt in utils.aabbExtrema()]
coord_25,coord_50,coord_75=mm+.25*(mx-mm),mm+.5*(mx-mm),mm+.75*(mx-mm)
area_25,area_50,area_75=utils.approxSectionArea(coord_25,axis),utils.approxSectionArea(coord_50,axis),utils.approxSectionArea(coord_75,axis)

O.engines=[
	ForceResetter(),
	InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius,label='is2aabb'),],sweepLength=.05*sphereRadius,nBins=5,binCoeff=5),
	InteractionLoop(
		[Ig2_Sphere_Sphere_Dem3DofGeom(distFactor=intRadius,label='ss2d3dg') if not scGeom else Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius,label='ss2sc')],
		[Ip2_CpmMat_CpmMat_CpmPhys()],
		[Law2_Dem3DofGeom_CpmPhys_Cpm(epsSoft=0) if not scGeom else Law2_ScGeom_CpmPhys_Cpm()],
	),
	NewtonIntegrator(damping=damping,label='damper'),
	CpmStateUpdater(realPeriod=1),
	UniaxialStrainer(strainRate=strainRateTension,axis=axis,asymmetry=0,posIds=posIds,negIds=negIds,crossSectionArea=crossSectionArea,blockDisplacements=False,blockRotations=False,setSpeeds=setSpeeds,label='strainer'),
	PyRunner(virtPeriod=1e-6/strainRateTension,realPeriod=1,command='addPlotData()',label='plotDataCollector',initRun=True),