def build_model(self, n_features, n_classes):
        """Create the computational graph of the model.

        :param n_features: Number of features.
        :param n_classes: number of classes.
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_layers(n_classes)

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = self.trainer.compile(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
    def build_model(self, n_features, n_classes):
        """Create the computational graph of the model.

        :param n_features: Number of features.
        :param n_classes: number of classes.
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_layers(n_classes)

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = self.trainer.compile(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
Beispiel #3
0
    def build_model(self, n_features, n_classes):
        """Create the computational graph.

        :param n_features: number of features
        :param n_classes: number of classes
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_variables(n_features, n_classes)

        self.mod_y = tf.nn.softmax(
            tf.add(tf.matmul(self.input_data, self.W_), self.b_))

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = tf.train.GradientDescentOptimizer(
            self.learning_rate).minimize(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
    def build_model(self, n_features, n_classes):
        """Create the computational graph.

        :param n_features: number of features
        :param n_classes: number of classes
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_variables(n_features, n_classes)

        self.mod_y = tf.nn.softmax(
            tf.add(tf.matmul(self.input_data, self.W_), self.b_))

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = tf.train.GradientDescentOptimizer(
            self.learning_rate).minimize(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
    def build_model(self, n_features, n_classes):
        """Create the computational graph.

        This graph is intented to be created for finetuning,
        i.e. after unsupervised pretraining.
        :param n_features: Number of features.
        :param n_classes: number of classes.
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_variables(n_features)

        next_train = self._create_encoding_layers()
        self.mod_y, _, _ = Layers.linear(next_train, n_classes)
        self.layer_nodes.append(self.mod_y)

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = self.trainer.compile(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
    def build_model(self, n_features, n_classes):
        """Create the computational graph.

        This graph is intented to be created for finetuning,
        i.e. after unsupervised pretraining.
        :param n_features: Number of features.
        :param n_classes: number of classes.
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_variables(n_features)

        next_train = self._create_encoding_layers()
        self.mod_y, _, _ = Layers.linear(next_train, n_classes)
        self.layer_nodes.append(self.mod_y)

        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = self.trainer.compile(self.cost)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
Beispiel #7
0
    def build_model(self, n_features, n_classes):
        """Create the computational graph.

        This graph is intented to be created for finetuning,
        i.e. after unsupervised pretraining.
        :param n_features: Number of features.
        :param n_classes: number of classes.
        :return: self
        """
        self._create_placeholders(n_features, n_classes)
        self._create_variables(n_features)
        self.global_step = tf.Variable(0, dtype=tf.int32)
        self.trainer = Trainer(
            self.opt, global_step=self.global_step, decay_step=self.decay_step, decay_rate=self.decay_rate, learning_rate=self.learning_rate,
            momentum=self.momentum)
        self.next_train = self._create_encoding_layers()
        self.mod_y, _, _ = Layers.linear(self.next_train, n_classes)
        self.layer_nodes.append(self.mod_y)
        self.cost = self.loss.compile(self.mod_y, self.input_labels)
        self.train_step = self.trainer.compile(self.cost, self.global_step)
        self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels)
        self.precision = Evaluation.precision(self.mod_y, self.input_labels)
        self.recall = Evaluation.recall(self.mod_y, self.input_labels)