Beispiel #1
0
def prepare_text_with_yaspi(
    yaspi_defaults: Dict[str, Union[str, int]],
    common_kwargs: Dict,
    datasets: List[str],
    embedding_names: List[str],
):
    cmd_args = sys.argv
    remove = ["--yaspify", "--datasets", "--embedding_name"]
    cmd_args = filter_cmd_args(cmd_args, remove=remove)
    base_cmd = f"python {' '.join(cmd_args)} --slurm"
    # avoid filename limit
    embedding_acronyms = []
    for embedding_name in embedding_names:
        acronym = "".join([x[0].upper() for x in embedding_name.split("-")])
        embedding_acronyms.append(acronym)

    job_name = f"prepare-text-{'-'.join(datasets)}-{'-'.join(embedding_acronyms)}"
    pairs = list(itertools.product(embedding_names, datasets))
    job_queue = []
    for embedding_name, dataset in pairs:
        job_queue.append(
            f'"--embedding_name {embedding_name} --datasets {dataset}"')
    job_queue = " ".join(job_queue)
    job = Yaspi(
        cmd=base_cmd,
        job_queue=job_queue,
        job_name=job_name,
        job_array_size=len(pairs),
        **yaspi_defaults,
    )
    job.submit(watch=True, conserve_resources=5)
    extract_embeddings(**common_kwargs)
Beispiel #2
0
def train_baselines_with_yaspi(
    yaspi_defaults_path: Path,
    common_kwargs: Dict,
    timestamp: str,
    datasets: List[str],
):
    with open(yaspi_defaults_path, "r") as f:
        yaspi_defaults = json.load(f)
    cmd_args = sys.argv
    remove = ["--yaspify", "--datasets"]
    cmd_args = filter_cmd_args(cmd_args, remove=remove)
    cmd_args.extend(["--timestamp", timestamp])
    base_cmd = f"python {' '.join(cmd_args)}"
    job_name = f"baselines-{timestamp}"
    job_queue = [f'"--datasets {dataset}"' for dataset in datasets]
    job_queue = " ".join(job_queue)
    job = Yaspi(
        cmd=base_cmd,
        job_queue=job_queue,
        job_name=job_name,
        job_array_size=len(datasets),
        **yaspi_defaults,
    )
    job.submit(watch=True, conserve_resources=5)
    train_baselines(**common_kwargs, aggregate=True)
Beispiel #3
0
def test_yaspi_object_creation():
    with open("yaspi_test/misc/dummy_yaspi_config.json", "r") as f:
        yaspi_defaults = json.load(f)
    for key, val in yaspi_defaults.items():
        if key in PATH_ARGS:
            yaspi_defaults[key] = Path(val)
    cmd = "python yaspi_test/misc/hello_world.py"
    job_name = "test_yaspi"
    job_queue = ""
    yaspi = Yaspi(
        cmd=cmd,
        job_name=job_name,
        job_queue=job_queue,
        job_array_size=1,
        **yaspi_defaults,
    )
    print(f"Test yaspi object: {yaspi}")
    if socket.gethostname() in HOSTS_WITH_SLURM:
        yaspi.submit()
Beispiel #4
0
def test_yaspi_object_line_deletion():
    with open("yaspi_test/misc/dummy_yaspi_config.json", "r") as f:
        yaspi_defaults = json.load(f)
    for key, val in yaspi_defaults.items():
        if key in PATH_ARGS:
            yaspi_defaults[key] = Path(val)
    cmd = "python yaspi_test/misc/hello_world.py"
    job_name = "test_yaspi"
    job_queue = ""

    # Check that yaspi only includes sbatch directives for values that
    # are not None when OR_DELETE_LINE is specified in the sbatch template.
    # This test uses the "constraint_str" flag as an example of a directive
    # that should be None by default

    # First, check that supplying a yaspi key-value pair ensures it is present
    yaspi_defaults["constraint_str"] = "p40"
    sbatch_directive = "#SBATCH --constraint"
    yaspi = Yaspi(
        cmd=cmd,
        job_name=job_name,
        job_queue=job_queue,
        job_array_size=1,
        **yaspi_defaults,
    )
    # Read the template that was written to disk
    with open("data/slurm-gen-scripts/cpu-proc/template.sh", "r") as f:
        template_contents = f.read()
    assert sbatch_directive in template_contents, (
        f"Expected to find {sbatch_directive} in template contents")

    # Check that supplying a None-valued yaspi key-value pair ensures it is not present
    yaspi_defaults["constraint_str"] = None
    yaspi = Yaspi(
        cmd=cmd,
        job_name=job_name,
        job_queue=job_queue,
        job_array_size=1,
        **yaspi_defaults,
    )
    # Read the template that was written to disk
    with open("data/slurm-gen-scripts/cpu-proc/template.sh", "r") as f:
        template_contents = f.read()
    assert sbatch_directive not in template_contents, (
        f"Expected not to find {sbatch_directive} in template contents")
    if socket.gethostname() in HOSTS_WITH_SLURM:
        yaspi.submit()
Beispiel #5
0
    episode2subset = get_episode2subset_map(args.subset2episode)

    if args.yaspify:
        with open(args.yaspi_defaults_path, "r") as f:
            yaspi_defaults = json.load(f)
        cmd_args = sys.argv
        cmd_args.remove("--yaspify")
        base_cmd = f"python {' '.join(cmd_args)}"
        job_name = f"create-{args.num_partitions}-info-windows"
        yaspi_defaults["constraint_str"] = args.constraint_str
        yaspi_defaults[
            "partition"] = "gpu" if args.run_on_gnodes else "compute"
        job = Yaspi(
            cmd=base_cmd,
            job_queue=None,
            gpus_per_task=0,
            job_name=job_name,
            job_array_size=args.num_partitions,
            **yaspi_defaults,
        )
        job.submit(watch=True, conserve_resources=5)
    else:
        if args.slurm:
            if socket.gethostname().endswith("cluster"):
                os.system(str(Path.home() / "configure_tmp_data.sh"))
        main(
            limit=args.limit,
            refresh=args.refresh,
            data_dir=args.data_dir,
            processes=args.processes,
            prob_thres=args.prob_thres,
            trim_format=args.trim_format,
Beispiel #6
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size',
                        type=int,
                        default=64,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=14,
                        metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr',
                        type=float,
                        default=1.0,
                        metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma',
                        type=float,
                        default=0.7,
                        metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--dry-run',
                        action='store_true',
                        default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')

    # Additional flags used by yaspi
    parser.add_argument("--yaspify", action="store_true")
    parser.add_argument(
        "--yaspi_settings",
        default="yaspi_settings.json",
        help="file of SLURM specific options (e.g. number of GPUS)")
    parser.add_argument("--hyperparams", default="mnist_hyperparams.json")
    args = parser.parse_args()

    if args.yaspify:
        # --------------------------------------------------------------------
        # This section contains the logic for launching multiple runs
        # --------------------------------------------------------------------
        # The command that will be launched on each worker will be identical to the
        # python command used to launch this script (including all flags), except:
        #  1. The --yaspify flag will be removed
        #  2. Flags from hyperparams will be inserted
        # -------------------------------------------------------------------------

        # load the hyperparameters
        with open(args.hyperparams, "r") as f:
            hyperparams = json.load(f)
        exp_flags = []
        for exp in hyperparams:
            exp_flags.append(" ".join(
                [f"--{key} {val}" for key, val in exp.items()]))

        # Select a name for your jobs (this is what will be visible via the `sinfo`
        # SLURM command)
        num_jobs = len(exp_flags)
        job_name = f"train-mnist-{num_jobs}-jobs"

        # Provide the arguments to each SLURM worker as space-separated quoted strings
        job_queue = " ".join([f'"{flags}"' for flags in exp_flags])

        # remove the yaspify flag
        cmd_args = sys.argv
        cmd_args.remove("--yaspify")

        # construct the final command that will run each worker, together with job_queue
        base_cmd = f"python {' '.join(cmd_args)}"

        # load SLURM specific settings
        with open(args.yaspi_settings, "r") as f:
            yaspi_defaults = json.load(f)

        # Launch the jobs over SLURM
        job = Yaspi(
            cmd=base_cmd,
            job_queue=job_queue,
            job_name=job_name,
            job_array_size=num_jobs,
            **yaspi_defaults,
        )
        # The `watch` argument will keep
        job.submit(watch=True, conserve_resources=5)
    else:
        # --------------------------------------------------------------------
        # This section contains the original, unmodified code
        # --------------------------------------------------------------------
        use_cuda = not args.no_cuda and torch.cuda.is_available()
        torch.manual_seed(args.seed)

        device = torch.device("cuda" if use_cuda else "cpu")

        train_kwargs = {'batch_size': args.batch_size}
        test_kwargs = {'batch_size': args.test_batch_size}
        if use_cuda:
            cuda_kwargs = {
                'num_workers': 1,
                'pin_memory': True,
                'shuffle': True
            }
            train_kwargs.update(cuda_kwargs)
            test_kwargs.update(cuda_kwargs)

        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])
        dataset1 = datasets.MNIST('../data',
                                  train=True,
                                  download=True,
                                  transform=transform)
        dataset2 = datasets.MNIST('../data', train=False, transform=transform)
        train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
        test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

        model = Net().to(device)
        optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

        scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
        for epoch in range(1, args.epochs + 1):
            train(args, model, device, train_loader, optimizer, epoch)
            test(model, device, test_loader)
            scheduler.step()

        if args.save_model:
            torch.save(model.state_dict(), "mnist_cnn.pt")
Beispiel #7
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset",
        default="bsl_signbank",
        choices=[
            "bsl_signbank",
            "bsl_signdict",
            "bbcsl",
            "msasl",
            "wlasl",
            "bbcsl_annotated",
            "bbcsl_raw",
            "BSLCP_raw",
        ],
    )
    parser.add_argument("--limit", type=int, default=0)
    parser.add_argument("--processes", type=int, default=1)
    parser.add_argument("--resize_res", type=int, default=256)
    parser.add_argument("--worker_id", default=0, type=int)
    parser.add_argument("--progress_markers", type=int, default=100)
    parser.add_argument("--yaspify", action="store_true")
    parser.add_argument("--use_gnodes", action="store_true")
    parser.add_argument("--slurm", action="store_true")
    parser.add_argument("--refresh", action="store_true")
    parser.add_argument(
        "--mouthing_window_secs",
        default=0,
        type=int,
        help="if given, preprocess videos from different windows.",
    )
    parser.add_argument("--num_partitions", default=1, type=int)
    parser.add_argument("--relevant_ids_path",
                        help="if given, filter to these ids")
    parser.add_argument("--yaspi_defaults_path",
                        default="misc/yaspi_cpu_defaults.json")
    parser.add_argument("--vis", action="store_true")
    args = parser.parse_args()

    fname_suffix = ""
    if args.mouthing_window_secs:
        assert args.dataset == "bbcsl", f"Mouthing windows are only supported for bbcsl"
        fname_suffix = f"-{args.mouthing_window_secs}sec-window-signhd"

    exclude_pattern = None
    if args.dataset in {"bsl_signbank", "bsl_signdict", "msasl", "wlasl"}:
        tag, suffix = "videos_360h_25fps", ".mp4"
    elif args.dataset in {"bbcsl", "bbcsl_annotated"}:
        fname_suffix += "-videos-fixed"
        tag, suffix = "annotated-videos-fixed", ".mp4"
    elif args.dataset == "bbcsl_raw":
        tag, suffix = "videos-mp4", "signhd-dense-fast-audio.mp4"
    elif args.dataset == "BSLCP_raw":
        tag, suffix, exclude_pattern = "videos", ".mov", "+"
    else:
        raise ValueError(f"Unknown dataset: {args.dataset}")
    dest_fname = f"videos-resized-25fps-{args.resize_res}x{args.resize_res}"
    dataset_name2dir = {"BSLCP_raw": "BSLCP"}
    dataset_dir = dataset_name2dir.get(args.dataset, args.dataset)

    src_video_dir = Path("data") / dataset_dir / f"{tag}{fname_suffix}"
    dest_video_dir = src_video_dir.parent / f"{dest_fname}{fname_suffix}"

    if getpass.getuser() == "albanie" and socket.gethostname().endswith(
            "cluster"):
        os.system(str(Path.home() / "configure_tmp_data.sh"))

    if args.yaspify:
        with open(args.yaspi_defaults_path, "r") as f:
            yaspi_defaults = json.load(f)
        cmd_args = sys.argv
        cmd_args.remove("--yaspify")
        base_cmd = f"python {' '.join(cmd_args)}"
        job_name = f"preproc-videos-{args.num_partitions}-partitions"
        if args.use_gnodes:
            yaspi_defaults["partition"] = "gpu"
        job = Yaspi(
            cmd=base_cmd,
            job_queue=None,
            gpus_per_task=0,
            job_name=job_name,
            job_array_size=args.num_partitions,
            **yaspi_defaults,
        )
        job.submit(watch=True, conserve_resources=5)
    else:
        resize_videos(
            vis=args.vis,
            suffix=suffix,
            limit=args.limit,
            refresh=args.refresh,
            worker_id=args.worker_id,
            processes=args.processes,
            resize_res=args.resize_res,
            num_partitions=args.num_partitions,
            src_video_dir=src_video_dir,
            dest_video_dir=dest_video_dir,
            relevant_ids_path=args.relevant_ids_path,
            progress_markers=args.progress_markers,
            exclude_pattern=exclude_pattern,
        )