def getMeanStationVelocities1(stationTraces=None): # get station velocities from a set of station positions. # the previous way we did this was probaly pretty silly - which was just to average (x_i-x_{i-1})/dt. # in this method: get positions; fit to a linear function: lat = lat0 + v_lat*t, lon = lon0 + v_lon*t # #if stationPositions==None: stationPositions=getStationPositions() times=map(operator.itemgetter(0), stationTraces[1:]) #positions=[times] returnVelocities=[] lflon=yp.linefit() lflat=yp.linefit() for i in xrange(1, len(stationTraces[1])): thispositions=map(operator.itemgetter(i), stationTraces) thislats=map(operator.itemgetter(0), thispositions[1:]) thislons=map(operator.itemgetter(1), thispositions[1:]) thisStation = thispositions[0] #print "lens: %d, %d, %d" % (len(times), len(thislats), len(thislons)) # # now, fit x,y to lines. lflon.datas=[times, thislons, scipy.zeros(len(thislons))+1] lflat.datas=[times, thislats, scipy.zeros(len(thislats))+1] #print lflon.datas lonfits=lflon.doFit() latfits=lflat.doFit() # #returnVelocities+=[[thisStation, lflon.a, lflat.a, lflon.b, lflat.b, lflon.varaprime, lflat.varaprime, lflon.varbprime, lflat.varbprime]] # note that we have returned the a parameter as well. this can be used to infer the expected starting position (aka, we do not treat # the first measurement as being special). obviously, use times[0] to get the starting position. be careful, since the raw lat/lon outputs # (a values) will look "normal" since movement is slow and t0 is relatively recent. # # but let's go ahead and return the starting position, as per the data set provided. lon0=lflon.a + lflon.b*times[0] lat0=lflat.a + lflat.b*times[0] returnVelocities+=[[thisStation, lon0, lat0, lflon.b, lflat.b, lflon.varaprime, lflat.varaprime, lflon.varbprime, lflat.varbprime]] return returnVelocities
def plotMFIdistsRho(bclust=2.2, rhorange=[0.1, 1.0, 0.2], kmaxFP=10 ** 6, nMax=200, pim=4.9, fpmodel=1, fignums=[0, 1]): # rhorange = [minrho, maxrho, dRho] bofpim = [] for fignum in fignums: plt.figure(fignum) plt.clf() plt.xlabel("$log_{10}(k)$", size=18) plt.ylabel("$log_{10}(N(k))$", size=18) # primeRhos = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] thisrho = rhorange[0] icount = 0 while thisrho <= rhorange[1]: X = getMFIsquarePropModel(bclust, thisrho, pim, kmaxFP, nMax, fpmodel) x = [] y1 = [] y2 = [] xstart = 25 for rw in X: # print rw x += [math.log10(rw[2])] # print rw[3] y1 += [math.log10(rw[3])] y2 += [math.log10(rw[4])] lf1 = yp.linefit([x[xstart:], y1[xstart:]]) lf2 = yp.linefit([x[xstart:], y2[xstart:]]) lf1.doFit() lf2.doFit() # lf1.doFit(None, None, 3) # lf2.doFit(None, None, 3) # bofpim += [[pim, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] plt.figure(fignums[0]) plt.title("$\\beta=2.2$") plt.plot( x, y1, "%s.-" % yp.pycolor(icount), label="$\\rho = %s, \\epsilon=%s, b=%s$" % (str(thisrho), str(pim), str(-lf1.b)), lw=2, ) # beta!=2 plt.plot( [x[0], x[xstart], x[-1]], [lf1.a + lf1.b * x[0], lf1.a + lf1.b * x[xstart], lf1.a + lf1.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=15, ) plt.figure(fignums[1]) plt.title("$\\beta=2.0$") plt.plot( x, y2, "%s.-" % yp.pycolor(icount), label="$\\rho = %s, \\epsilon=%s, b=%s$" % (str(thisrho), str(pim), str(-lf2.b)), lw=2, ) # beta=2 approximation plt.plot( [x[0], x[xstart], x[-1]], [lf2.a + lf2.b * x[0], lf2.a + lf2.b * x[xstart], lf2.a + lf2.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=15, ) icount += 1 # thisrho += rhorange[2] plt.show() # for fignum in fignums: plt.figure(fignum) plt.legend(loc="best") return bofpim
def plotMFIdists2( bclust=2.2, rho=0.59, kmaxFP=10 ** 6, nMax=100, pimrange=[0.0, 5.0], doClf=[True, True, False], fpmodel=0 ): # MFI dists with variable b(pim) # for now, just approximate values of bclust: bclust = [[0.0, 2.2], [1.0, 2.22], [2.0, 2.24], [3.0, 2.27], [4.0, 2.35], [4.6, 2.37]] # and for now, we know we're going to do .2 intervals, so: mybclusts = [] for i in xrange(len(bclust)): # for rw in bclust: rw = bclust[i] mybclusts += [rw] if mybclusts[-1] == bclust[-1]: break # print mybclusts[-1] while mybclusts[-1][0] < bclust[i + 1][0]: mybclusts += [[mybclusts[-1][0] + 0.2, mybclusts[-1][1]]] # return mybclusts # pim = pimrange[0] bofpim = [] plt.figure(0) if doClf[0]: plt.clf() plt.figure(1) if doClf[1]: plt.clf() i = 0 while pim <= pimrange[1]: # X=getMFIsquarePropModel(bclust, rho, pim, kmaxFP, nMax) X = getMFIsquarePropModel(mybclusts[i][1], rho, pim, kmaxFP, nMax, fpmodel) x = [] y1 = [] y2 = [] for rw in X: # print rw x += [math.log(rw[2])] y1 += [math.log(rw[3])] y2 += [math.log(rw[4])] lf1 = yp.linefit([x[1:], y1[1:]]) lf2 = yp.linefit([x[1:], y2[1:]]) lf1.doFit() lf2.doFit() # bofpim += [[pim, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] plt.figure(0) # plt.loglog(map(operator.itemgetter(2), X), map(operator.itemgetter(3), X), '.-') plt.plot(x, y1, ".-", label="pim=%s, b=%s" % (str(pim), str(-lf1.b))) plt.figure(1) # plt.loglog(map(operator.itemgetter(2), X), map(operator.itemgetter(4), X), '.-') plt.plot(x, y2, ".-", label="pim=%s, b=%s" % (str(pim), str(-lf2.b))) # pim += 0.2 i += 1 plt.figure(0) plt.legend(loc="upper right") plt.figure(1) plt.legend(loc="upper right") plt.figure(2) plt.clf() plt.plot( map(operator.itemgetter(0), bofpim), map(operator.itemgetter(2), bofpim), ".-", label="$ beta =2.2, rho = %s $" % str(rho), lw=2, ) plt.plot( map(operator.itemgetter(0), bofpim), map(operator.itemgetter(5), bofpim), ".-", label="$ beta =2.0, rho = %s $" % str(rho), lw=2, ) plt.xlabel("$p_{immune}$", size=16) plt.ylabel("$b_{fires}$", size=16) plt.legend(loc="best") plt.show() # return bofpim
def plotMFIdistsBetaEps(bclust=2.2, kmaxFP=10 ** 9, nMax=200, pimrange=[0.0, 5.0, 1.0], beta=1.25, fignums=[0, 1]): # def plotMFIdistsBetaEps(bclust=2.2, kmaxFP=10**9, nMax=200, pimlist=[0.0,1.0, 2.0, 3.0, 4.0, 4.9], beta=1.25, fignums=[0,1]): # (this function is probably redundant. same as ...Beta(), but fix beta and range over pim.) we know we get nice PL # when we vary the shape dimension. what about if we fix D (beta) and vary eps. with the fractal-footprint? # # fig 5 in PRE pub. # # pimrange=[0.0,4.9,1.] # "beta" version, use footprint ~ n**beta 1<beta<2.0 (or maybe 2.25 or something). # for now, fixed epsilon (pim), fixed rho. # rhorange = [minrho, maxrho, dRho] # note: bcluse is slope of b-distribution, beta is the exponent for shape area/raduis (n) scaling. fsize = 20 thisfont = pltf.FontProperties(size=fsize) thisfont2 = pltf.FontProperties(size=fsize - 2) # fpmodel = 2 # aka, MFI with fractal dimension treatment (as opposed to solid shapes, etc.) rho = 1.0 # basically, this puts all the empty sites into the fractal/branching structure. thisrho = rho bofpim = [] for fignum in fignums: plt.figure(fignum) plt.clf() plt.xlabel("$log_{10}(k)$", size=fsize + 2) plt.ylabel("$log_{10}(N(k))$", size=fsize + 2) # # starts=[] # primeRhos = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] # thisrho=rhorange[0] icount = 0 # while thisrho<=rhorange[1]: # for beta in betas: pim = pimrange[0] pim0 = pim while pim0 <= pimrange[1]: # for pim in pimlist: # X=getMFIsquarePropModel(bclust, thisrho, pim, kmaxFP, nMax, fpmodel) pim = pim0 if pim > 4.9: pim = 4.9 print "prams: %s, %s, %s, %s, %s, %s, %s" % (bclust, thisrho, pim, kmaxFP, nMax, fpmodel, beta) # pim=pimrange[0]+float(icount)*pimrange[2] X = getMFIsquarePropModel(bclust, thisrho, pim, kmaxFP, nMax, fpmodel, beta) print "beta=%f, len=%d" % (beta, len(X)) x = [] y1 = [] y2 = [] # xstart=25 xstart = 15 sxtop = 500 for rw in X: # print rw x += [math.log10(rw[2])] # print rw[3] y1 += [math.log10(rw[3])] y2 += [math.log10(rw[4])] lf1 = yp.linefit([x[xstart:], y1[xstart:]]) lf2 = yp.linefit([x[xstart:], y2[xstart:]]) lf1.doFit() lf2.doFit() # lf1.doFit(None, None, 3) # lf2.doFit(None, None, 3) # dotsies = yp.integerSpacedPoints([x[1:], y1[1:]], 0.5) dotsies[0] += [x[-1]] dotsies[1] += [y1[-1]] if fpmodel > 1: bofpim += [[pim, beta, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] else: bofpim += [[pim, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] plt.figure(fignums[0]) # plt.title('$\\beta=2.2$') # plt.plot(x[1:],y1[1:],'%s.-' % yp.pycolor(icount), label='$\\rho = %s, \\epsilon=%s, D=%s, b=%s$' % (str(thisrho), str(pim), str(beta), str(-lf1.b)[0:5]), lw=2) # beta!=2 plt.plot( dotsies[0], dotsies[1], "%s%s" % (yp.pycolor(icount), yp.fitMarkerShortList[icount % len(yp.fitMarkerShortList)]), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-lf1.b)[0:5]), ms=10, ) plt.plot(x[1:], y1[1:], "%s-" % yp.pycolor(icount), lw=2, ms=10) # beta!=2 plt.plot( [x[0], x[xstart], x[-1]], [lf1.a + lf1.b * x[0], lf1.a + lf1.b * x[xstart], lf1.a + lf1.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=15, ) plt.figure(fignums[1]) # plt.title('$\\beta=2.0$') # plt.plot(x[1:], y2[1:], '%s.-' % yp.pycolor(icount), label='$\\rho = %s, \\epsilon=%s, D=%s, b=%s$' % (str(thisrho), str(pim), str(beta), str(-lf2.b)[0:5]), lw=2) # beta=2 approximation plt.plot( x[1:], y2[1:], "%s.-" % yp.pycolor(icount), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-lf2.b)[0:5]), lw=2, ms=10, ) # beta=2 plt.plot( [x[0], x[xstart], x[-1]], [lf2.a + lf2.b * x[0], lf2.a + lf2.b * x[xstart], lf2.a + lf2.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=15, ) icount += 1 pim0 += pimrange[2] # # thisrho+=rhorange[2] # for fignum in fignums: plt.figure(fignum) ax = plt.gca() plt.subplots_adjust(bottom=0.15) plt.setp(ax.get_xticklabels(), fontsize=fsize) plt.setp(ax.get_yticklabels(), fontsize=fsize) # lgd=plt.legend(loc='best', numpoints=1, title='$D=1.25$', prop=thisfont2, ncol=1) lgd = plt.legend(loc="best", numpoints=1, prop=thisfont2, ncol=1) lgd.set_title("$D=1.25$") plt.setp(lgd.get_title(), fontsize=fsize) if fignum > 0: continue plt.savefig( "writeup/mfi-aps/mfi-PRE-letter/figs/mfi-fractalType-varEps-bc%s-D125.png" % str(bclust).replace(".", "") ) plt.savefig( "writeup/mfi-aps/mfi-PRE-letter/figs/mfi-fractalType-varEps-bc%s-D125.eps" % str(bclust).replace(".", "") ) plt.show() return bofpim
def plotMFIdistsBeta( bclust=2.2, kmaxFP=10 ** 9, nMax=200, pim=4.9, betas=[0.9, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5], fignums=[0, 1], dosave=False, ): # "Fig-4" in PRE publication. # # "beta" version, use footprint ~ n**beta 1<beta<2.0 (or maybe 2.25 or something). # for now, fixed epsilon (pim), fixed rho. # rhorange = [minrho, maxrho, dRho] # note: bcluse is slope of b-distribution, beta is the exponent for shape area/raduis (n) scaling. fpmodel = 2 rho = 1.0 # basically, this puts all the empty sites into the fractal/branching structure. thisrho = rho # fsize = 20 thisfont = pltf.FontProperties(size=fsize) thisfont2 = pltf.FontProperties(size=fsize - 2) # bofpim = [] for fignum in fignums: plt.figure(fignum) plt.clf() plt.xlabel("$log_{10}(k)$", size=fsize + 2) plt.ylabel("$log_{10}(N(k))$", size=fsize + 2) # # starts=[] # primeRhos = [0.1, 0.3, 0.5, 0.7, 0.9, 1.0] # thisrho=rhorange[0] icount = 0 # while thisrho<=rhorange[1]: fitMarkerShortList = ["o", "^", "s", "p", "*", "h", "+", "H", "D", "x"] for beta in betas: # X=getMFIsquarePropModel(bclust, thisrho, pim, kmaxFP, nMax, fpmodel) print "prams: %s, %s, %s, %s, %s, %s, %s" % (bclust, thisrho, pim, kmaxFP, nMax, fpmodel, beta) X = getMFIsquarePropModel(bclust, thisrho, pim, kmaxFP, nMax, fpmodel, beta) print "beta=%f, len=%d" % (beta, len(X)) x = [] y1 = [] y2 = [] # xstart=25 xstart = 2 sxtop = 500 for rw in X: # print rw x += [math.log10(rw[2])] # print rw[3] y1 += [math.log10(rw[3])] y2 += [math.log10(rw[4])] lf1 = yp.linefit([x[xstart:], y1[xstart:]]) lf2 = yp.linefit([x[xstart:], y2[xstart:]]) lf1.doFit() lf2.doFit() # lf1.doFit(None, None, 3) # lf2.doFit(None, None, 3) # if fpmodel > 1: bofpim += [[pim, beta, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] else: bofpim += [[pim, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] plt.figure(fignums[0]) # plt.title('$\\beta=2.2$') # plt.plot(x[1:],y1[1:],'%s.-' % yp.pycolor(icount), label='$\\rho = %s, \\epsilon=%s, \\beta_s=%s, b=%s$' % (str(thisrho), str(pim), str(beta), str(-lf1.b)[0:5]), lw=2) # beta!=2 dotsies = yp.integerSpacedPoints([x[1:], y1[1:]], 0.5) dotsies[0] += [x[-1]] dotsies[1] += [y1[-1]] # add end-bits for completeness. plt.plot(x[1:], y1[1:], "%s-" % yp.pycolor(icount), lw=2, ms=10) # beta!=2 plt.plot( dotsies[0], dotsies[1], "%s%s" % (yp.pycolor(icount), fitMarkerShortList[icount % len(fitMarkerShortList)]), label="$D=%s, b=%s$" % (str(beta), str(-lf1.b)[0:5]), ms=10, ) plt.plot( [x[0], x[xstart], x[-1]], [lf1.a + lf1.b * x[0], lf1.a + lf1.b * x[xstart], lf1.a + lf1.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=20, lw=2, ) # plt.figure(fignums[1]) # plt.title('$\\beta=2.0$') # plt.plot(x[1:], y2[1:], '%s.-' % yp.pycolor(icount), label='$\\rho = %s, \\epsilon=%s, \\beta_s=%s, b=%s$' % (str(thisrho), str(pim), str(beta), str(-lf2.b)[0:5]), lw=2) # beta=2 approximation plt.plot( x[1:], y2[1:], "%s.-" % yp.pycolor(icount), label="$D=%s, b=%s$" % (str(beta), str(-lf2.b)[0:5]), lw=2, ms=10, ) # beta=2 approximation plt.plot( [x[0], x[xstart], x[-1]], [lf2.a + lf2.b * x[0], lf2.a + lf2.b * x[xstart], lf2.a + lf2.b * x[-1]], "%s|-" % yp.pycolor(icount), ms=15, lw=2, ) icount += 1 # # thisrho+=rhorange[2] # for fignum in fignums: plt.figure(fignum) ax = plt.gca() plt.subplots_adjust(bottom=0.15) plt.setp(ax.get_xticklabels(), fontsize=fsize) plt.setp(ax.get_yticklabels(), fontsize=fsize) # plt.legend(loc='best', numpoints=1, prop=thisfont2, ncol=1, title='$\\epsilon=4.9$') lgd = plt.legend(loc="best", numpoints=1, prop=thisfont2, ncol=1) lgd.set_title("$\\epsilon=4.9$") plt.setp(lgd.get_title(), fontsize=fsize) # mfi-fractalType-varEps-bc22-D125 if fignum > 0: continue if dosave: plt.savefig( "writeup/mfi-aps/mfi-PRE-letter/figs/mfi-fractalType-eps49-bc%s-varD.png" % str(bclust).replace(".", "") ) plt.savefig( "writeup/mfi-aps/mfi-PRE-letter/figs/mfi-fractalType-eps49-bc%s-varD.eps" % str(bclust).replace(".", "") ) plt.show() return bofpim
def plotMFIdists( bclust=2.2, rho=0.59, kmaxFP=10 ** 6, nMax=200, pimrange=[0.0, 4.9], doClf=[True, True, False], fpmodel=1, lineNum=0 ): # pim=0.0 # lineNum is the index of the line on the plot when we plot multiple lines on a single canvas. beta = 1.5 print "lineNum: %d" % lineNum xstart = 15 pim = pimrange[0] bofpim = [] plt.figure(0) if doClf[0]: plt.clf() plt.figure(1) if doClf[1]: plt.clf() plt.figure(3) plt.clf() plt.figure(4) plt.clf() # primePims=[0.0, .4, 1.0, 1.4, 2.0, 2.4, 3.0, 3.4, 4.0, 4.6, 4.8] # primePims=[0, 4, 10, 14, 20, 24, 30, 34, 40, 46, 49] primePims = [0, 10, 20, 30, 40, 48] icount = -1 icount2 = 0 while pim <= (pimrange[1] + 0.0001): print pim icount += 1 X = getMFIsquarePropModel(bclust, rho, pim, kmaxFP, nMax, fpmodel, beta) x = [] y1 = [] y2 = [] for rw in X: # print rw x += [math.log10(rw[2])] # print rw[3] y1 += [math.log10(rw[3])] y2 += [math.log10(rw[4])] lf1 = yp.linefit([x[xstart:], y1[xstart:]]) lf2 = yp.linefit([x[xstart:], y2[xstart:]]) lf1.doFit() lf2.doFit() # lf1.doFit(None, None, 3) # lf2.doFit(None, None, 3) # bofpim += [[pim, lf1.a, -lf1.b, lf1.meanVar(), lf2.a, -lf2.b, lf2.meanVar()]] a1 = bofpim[-1][1] b1 = bofpim[-1][2] a2 = bofpim[-1][4] b2 = bofpim[-1][5] plt.figure(0) # plt.loglog(map(operator.itemgetter(2), X), map(operator.itemgetter(3), X), '.-') plt.plot(x, y1, "%s.-" % yp.pycolor(icount), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-lf1.b))) # beta!=2 # plt.plot([x[0], x[-1]], [a1-b1*x[0], a1-b1*x[-1]], '%s*-' % yp.pycolor(icount)) # plt.figure(1) # plt.loglog(map(operator.itemgetter(2), X), map(operator.itemgetter(4), X), '.-') plt.plot( x, y2, "%s.-" % yp.pycolor(icount), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-lf2.b)) ) # beta=2 approximation # plt.plot([x[0], x[-1]], [a2-b2*x[0], a2-b2*x[-1]], '%s*-' % yp.pycolor(icount)) # # plt.loglog(map(operator.itemgetter(2), X), map(operator.itemgetter(3), X), '.-') if int(10.0 * pim) in primePims: plt.figure(3) plt.plot( x, y1, "%s.-" % yp.pycolor(icount2), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-round(lf1.b, 2))), lw=2, ) plt.plot( [x[0], x[xstart], x[-1]], [a1 - b1 * x[0], a1 - b1 * x[xstart], a1 - b1 * x[-1]], "%s*-" % yp.pycolor(icount2), ) plt.figure(4) plt.plot( x, y2, "%s.-" % yp.pycolor(icount2), label="$\\epsilon=%s, b=%s$" % (str(pim), str(-round(lf2.b, 2))), lw=2, ) plt.plot( [x[0], x[xstart], x[-1]], [a2 - b2 * x[0], a2 - b2 * x[xstart], a2 - b2 * x[-1]], "%s*-" % yp.pycolor(icount2), ) icount2 += 1 pim += 0.2 plt.figure(0) plt.legend(loc="upper right") plt.figure(1) plt.legend(loc="upper right") plt.figure(3) plt.legend(loc="lower left") plt.xlabel("$log(k)$", size=18) plt.ylabel("$log(N(k))$", size=18) plt.figure(4) plt.legend(loc="lower left") plt.xlabel("$log(k)$", size=18) plt.ylabel("$log(N(k))$", size=18) for i in xrange(5): plt.figure(i) plt.title("$\\rho=%f$" % rho) plt.figure(2) if doClf[2]: plt.clf() # if int(10.0*pim) in primePims: plt.plot( map(operator.itemgetter(0), bofpim), map(operator.itemgetter(2), bofpim), "%s.-" % yp.pycolor(lineNum), label="$ \\beta = 2.2, \\rho = %s $" % str(rho), lw=2, ) plt.plot( map(operator.itemgetter(0), bofpim), map(operator.itemgetter(5), bofpim), "%s>-" % yp.pycolor(lineNum), label="$ \\beta = 2.0, \\rho = %s $" % str(rho), lw=2, ) plt.xlabel("$\\epsilon$", size=18) plt.ylabel("$b_{fires}$", size=18) plt.show() # return bofpim