Beispiel #1
0
    def __init__(self, port):
        #Build Socket
        self.connections = []
        self.connections_limit = 2
        self.shock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        self.shock.bind(("0.0.0.0", port))
        self.shock.setblocking(True)
        self.shock.listen(10)
        self.connections.append(self.shock)

        #Start Stream
        self.dev = rs.pipeline()
        config = rs.config()
        config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
        config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
        self.dev.start(config)

        self.signature_dict = {0x00: self.scan_all}

        #Start modules
        self.post_processing = PostProcessing()
        self.yolo = Yolo(None)
        self.yolo.load_model()

        while True:
            try:
                self.spin_socket()
            except KeyboardInterrupt:
                self.dev.close()
                self.shock.close()
Beispiel #2
0
    def __init__(self):
        rospy.init_node('Object_Detection')
        self.target = ""
        self.yolo = Yolo()
        self.bridge = CvBridge()
        self.depth_finder = Depth_Finder()

        self.TIMEOUT = 15
        self.coord_pub_map = rospy.Publisher('/cv/detected_obj/coords/map',
                                             PointStamped,
                                             queue_size=10,
                                             latch=True)
        self.coord_pub_odom = rospy.Publisher('/cv/detected_obj/coords/odom',
                                              PointStamped,
                                              queue_size=10,
                                              latch=True)
        self.coord_pub_json = rospy.Publisher('/cv/detected_obj/coords/json',
                                              String,
                                              queue_size=10,
                                              latch=True)
        self.img_pub = rospy.Publisher('/yolo/img',
                                       Image,
                                       queue_size=1,
                                       latch=True)

        img_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/image_color', Image, self.img_callback)
        info_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/camera_info', CameraInfo,
            self.info_callback)
Beispiel #3
0
    def __init__(self):
        self.__batch_size = cfg.BATCH_SIZE
        self.__image_size = cfg.IMAGE_SIZE
        self.__cell_size = cfg.CELL_SIZE
        self.__box_per_cell = cfg.BOX_PRE_CELL
        self.__num_class = len(cfg.CLASSES)
        self.__learn_rate_base = cfg.LEARN_RATE_BASE
        self.__max_periods = cfg.MAX_PERIODS
        self.__model_dir = cfg.MODEL_DIR
        self.__model_file = cfg.MODEL_FILE
        self.__log_dir = cfg.LOG_DIR
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__save_iter = cfg.SAVE_ITER

        self.__train_data = PascalVoc('train')
        self.__test_data = PascalVoc('test')

        with tf.name_scope('input'):
            self.__samples = tf.placeholder(dtype=tf.float32,
                                            name='samples',
                                            shape=(self.__batch_size,
                                                   self.__image_size,
                                                   self.__image_size, 3))
            self.__labels = tf.placeholder(
                dtype=tf.float32,
                name='labels',
                shape=(self.__batch_size, self.__cell_size, self.__cell_size,
                       self.__box_per_cell, 5 + self.__num_class))
            self.__is_training = tf.placeholder(dtype=tf.bool,
                                                name='is_training')

        self.__yolo = Yolo()
        self.__yolo_output = self.__yolo.build_network(self.__samples,
                                                       self.__is_training)
        self.__yolo_loss = self.__yolo.loss(self.__yolo_output, self.__labels)

        with tf.name_scope('learn'):
            self.__learn_rate = tf.Variable(self.__learn_rate_base,
                                            trainable=False,
                                            name='learn_rate_base')
            moving_ave = tf.train.ExponentialMovingAverage(
                self.__moving_ave_decay).apply(tf.trainable_variables())
            optimize = tf.train.AdamOptimizer(self.__learn_rate).minimize(
                self.__yolo_loss)
            with tf.control_dependencies([optimize]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op = tf.no_op()

        with tf.name_scope('load'):
            self.__load = tf.train.Saver(tf.trainable_variables())
            self.__save = tf.train.Saver(tf.global_variables(), max_to_keep=50)

        with tf.name_scope('summary'):
            tf.summary.scalar('batch_loss', self.__yolo_loss)
            self.__summary_op = tf.summary.merge_all()
            self.__summary_writer = tf.summary.FileWriter(self.__log_dir)
            self.__summary_writer.add_graph(tf.get_default_graph())

        self.__sess = tf.Session()
Beispiel #4
0
def run_lpr():
    logging.info(f'Debug mode {app.debug}')

    if request.method == 'POST':
        file = request.files['file']
        img_bytes = file.read()
        file.close()

        if(img_bytes is not None):
            nparr = np.fromstring(img_bytes, np.uint8)
            inputImage = cv.imdecode(nparr, cv.IMREAD_COLOR)

            # TODO: state management: avoid loading net for every request
            yolo = Yolo(img_width=1056, img_height=576, 
                        debug=DEBUG, confidence_threshold=0.6, non_max_supress_theshold=0.4,
                        classes_filename='../config/classes.names',
                        model_architecture_filename="../config/yolov3_license_plates.cfg", 
                        model_weights_filename="../config/yolov3_license_plates_last.weights",
                        output_directory='../debug/')                   

            roi_imgs = yolo.detect(inputImage)

            ocr = OCR(model_filename="../config/emnist_net_custom.pt", num_classes=36, use_cuda=False, debug=DEBUG)

            index = 0
            for roi_img in roi_imgs:
                logging.info(f'\n\nProcessing ROI {index}')
                box = [yolo.bounding_boxes[index][0], yolo.bounding_boxes[index][1], yolo.bounding_boxes[index][2], yolo.bounding_boxes[index][3]]
                predict(yolo.img, roi_img, box, str(index), (0,255,0), ocr)
                index += 1

            # API response: the highest confidence one
            logging.info(f'\n\n---Processing the Highest Confidence ROI---\n')
            bounding_box = None
            emnist_net_preds = None
            tesseract_preds = None
            if(yolo.highest_object_confidence > 0 and yolo.roi_img is not None):
                bounding_box = {
                    'x': yolo.box_x,
                    'y': yolo.box_y,
                    'w': yolo.box_w,
                    'h': yolo.box_h
                }                                
                _, emnist_net_preds, tesseract_preds = predict(yolo.img, yolo.roi_img, [yolo.box_x, yolo.box_y, yolo.box_w, yolo.box_h], "", (255,255,0), ocr)                                
                if(DEBUG):                    
                    cv.imwrite("../debug/result.jpg", yolo.img.astype(np.uint8))
    
            data = {
                'bounding_box': bounding_box,
                'confidence': yolo.highest_object_confidence,
                'classId': str(yolo.classId_highest_object),
                'emnist_net_preds': emnist_net_preds,
                'tesseract_preds': tesseract_preds
            }
            response = jsonify(data)

    response.status_code = 200
    return response
Beispiel #5
0
def setup(sender=None, **kwargs):
    global yolo
    yolo = Yolo()

    global face_filter
    face_filter = FaceFilterClass()

    #warm up
    yolo.crop_persons("test3.png")
def reset_model():
    yolo = Yolo()

    random_image = tf.convert_to_tensor(np.random.random(
        (1, image_size, image_size, 3)),
                                        dtype=np.float32)

    _ = yolo(random_image)

    yolo.save_weights("./weights/yolo")
 def __init__(self):
     self.net = NetworkManager(9999)
     self.yolo = Yolo()
     self.yolo.load_model()
     self.net.addCallback(0x00, self.yolo_callback)
     while True:
         try:
             self.net.spinSocket()
         except KeyboardInterrupt:
             self.net.close()
def show_prediction(data_index):
    with open("../data/data_detect_local_evaluate_100.json") as json_file:
        data = json.load(json_file)

    if (data_index not in data):
        print("Index {} out of range".format(data_index))
        return

    yolo = Yolo()
    yolo.load_weights("./weights/yolo")

    img_path = "../pictures/pictures_detect_local_evaluate_100/{}.png".format(
        data_index)
    img = get_img(img_path)
    preds = yolo(img)
    boxes = get_boxes(preds)
    show(data_index, img_path, boxes)
 def __init__(self, updater):
     self.sd = SpoilerDetector()
     self.ms = MythicSpoiler()
     self.yolo = Yolo(config.model, config.classes, config.conf)
     self.reddit = Reddit(subreddit="magicTCG")
     self.scryfall_futur_cards_id = []
     self.reddit_futur_cards_subm_id = []
     self.mythicspoiler_futur_cards_url = []
     self.limit_days = 45
     # List of Spoiler Objects
     limit_date = datetime.today() - timedelta(days=self.limit_days)
     self.spoiled = Session.query(Spoiler).filter(
         Spoiler.found_at > limit_date).all()
     # Job queues:
     updater.job_queue.run_repeating(self.general_crawl,
                                     interval=60,
                                     first=10)
class YoloServer(object):
    def __init__(self):
        self.net = NetworkManager(9999)
        self.yolo = Yolo()
        self.yolo.load_model()
        self.net.addCallback(0x00, self.yolo_callback)
        while True:
            try:
                self.net.spinSocket()
            except KeyboardInterrupt:
                self.net.close()

    def yolo_callback(self, arg):
        byte_img = bytes(arg['img'], 'ascii')
        img_decoded = base64.b64decode(byte_img)
        img = numpy.frombuffer(img_decoded, dtype=numpy.uint8)
        cv_img = cv2.imdecode(img, flags=1)
        names = self.yolo.run(numpy.asarray(cv_img), False)
        return (0x00, {'names': names})
Beispiel #11
0
def main():
    cfgfilepath, datafilepath, weightfilepath, host, port, uploaddir, pub_img_flag = importargs(
    )
    yolo = Yolo(cfgfilepath, weightfilepath, datafilepath)

    server = DarknetServer('yolo_server', uploaddir, ['jpg', 'png'],
                           pub_img_flag, yolo)
    server.setup_converter()
    print("server run")
    server.run(host=host, port=port)
Beispiel #12
0
def compute_detections(directory, ground_truth_filename, output):
    ''' 
    Computes the total number of detections
    in the data set for each image in the dataset
    and compares it to its ground truth.

    Args:
        directory: Path to images directory
        output: Output file name
    '''
    detections = []
    total = 0

    yolo = Yolo('yolov3.cfg', 'yolov3.weights', 'yolov3.txt')

    count = 1
    files = os.listdir(directory)
    for filename in files:
        _, indices, _ = yolo.extract_objects(directory + '/' + filename)
        num_objects = len(indices)
        detections.append([filename.split('.')[0], num_objects])
        total += num_objects
        print('Number of objects detected in {}: {}'.format(
            filename, num_objects))

        if count % 10 == 0:
            print("\nProcessed {} out of {}".format(count, len(files)))

        count += 1

    detections.append(['Total Objects Detected', total])

    predictions = pd.DataFrame(detections)
    ground_truth = parse_ground_truth(ground_truth_filename)
    result = pd.merge(predictions,
                      ground_truth,
                      how='outer',
                      left_on=0,
                      right_on=0)
    result['1_x'] = result['1_x'].fillna(0).astype(int)

    result.to_csv(output, index=False, header=False)
    def __init__(self, args):

        if (args['method'] == 'HOG'):
            self.method = Hog(args['confidence'])

        elif (args['method'] == 'CAFFE'):
            self.method = Caffe(args['confidence'])

        elif (args['method'] == 'YOLO'):
            self.method = Yolo(args['confidence'])

        else:
            print(
                'Fail, unknown algorithm. Try with -m HOG, -m CAFFE, -m YOLO')
            rospy.signal_shutdown('Quit')

        # Initialize the bridge to transform the image detect by topic's ROS
        self.bridge = CvBridge()

        # initialize our centroid tracker and frame dimensions
        self.ct = CentroidTracker()

        # Initialize the subscriber and publisher
        self.image_sub = rospy.Subscriber("/ardrone/image_raw", Image,
                                          self.callback)
        self.image_pub = rospy.Publisher("image_processed",
                                         Image,
                                         queue_size=10)
        self.controller = DroneController(args)
        self.droneStatus = DroneStatus()

        self.previous_position = None
        self.actual_position = None
        self.detection_status = DETECTION_STATUS['SearchingPerson']
        self.last_action = {
            'roll': 0,
            'pitch': 0,
            'yaw_velocity': 0,
            'z_velocity': 0
        }
        self.shutdown = 500
Beispiel #14
0
    def __init__(self):
        rospy.init_node('Semantic_Labelling')
        self.yolo = Yolo()
        self.bridge = CvBridge()
        self.depth_finder = Depth_Finder()
        self.img_pub = rospy.Publisher('/semantic_labels/img',
                                       Image,
                                       queue_size=10)
        self.nav_pub = rospy.Publisher('/azm_nav/semantic_label_additions',
                                       String,
                                       queue_size=10)

        info_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/camera_info',
            CameraInfo,
            self.info_callback,
            queue_size=None)
        img_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/image_color',
            Image,
            self.img_callback,
            queue_size=1,
            buff_size=52428800)
Beispiel #15
0
    def __init__(self, weights_file):
        self.verbose = True
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = [
            "recoon", "other", "other", "other", "other", "other", "other",
            "other", "other", "other", "other", "other", "other", "other",
            "other", "other", "other", "other", "other", "other"
        ]
        self.weights_file = weights_file
        self.C = len(self.classes)  # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(
            np.reshape(np.array([np.arange(self.S)] * self.S * self.B),
                       [self.B, self.S, self.S]), [1, 2, 0])
        #将第0维放置第三维
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threshold
        self.iou_threshold = 0.5
        self.model_path = 'model'
        self.sess = tf.Session()
        self.net = Yolo()
        self.predicts = self.net.logits
        self.variable_to_restore = tf.global_variables()
        self.saver = tf.train.Saver(self.variable_to_restore, max_to_keep=None)
        self.total_loss = 0.0
        self.total_TP = 0
        self.total_p = 0

        self.ckpt_file = os.path.join(self.model_path, 'yolo')
        gpuConfig = tf.ConfigProto(device_count={'gpu': 0})
        #gpuConfig.gpu_options.allow_growth = True
        #gpu_options = tf.GPUOptions()
        #config = tf.ConfigProto(gpu_options=gpuConfig)
        self.sess = tf.Session(config=gpuConfig)
        self.sess.run(tf.global_variables_initializer())
        ckpt = tf.train.get_checkpoint_state(self.model_path)  #获取checkpoints对象
        if ckpt and ckpt.model_checkpoint_path:  ##判断ckpt是否为空,若不为空,才进行模型的加载,否则从头开始训练
            print('Restoring weights from: ' + ckpt.model_checkpoint_path)
            self.saver.restore(self.sess,
                               ckpt.model_checkpoint_path)  #恢复保存的神经网络结构,实现断点续训
        elif self.weights_file is not None:
            print('Restoring weights from: ' + self.weights_file)
            self.saver.restore(self.sess, self.weights_file)
Beispiel #16
0
def main():
    tf.reset_default_graph()
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', default="YOLO_small.ckpt", type=str)
    parser.add_argument('--data_dir', default="data", type=str)
    parser.add_argument('--threshold', default=0.2, type=float)
    parser.add_argument('--iou_threshold', default=0.5, type=float)
    parser.add_argument('--gpu', default='0', type=str)
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = "0"

    yolo = Yolo()
    pascal = pascal_voc('test')

    solver = Solver(yolo, pascal)

    print('Start testing ...')
    solver.train()
    print('Done testing.')
Beispiel #17
0
    def __init__(self):
        self.__image_size = cfg.IMAGE_SIZE
        self.__cell_size = cfg.CELL_SIZE
        self.__down_sample_size = 1.0 * self.__image_size / self.__cell_size
        self.__box_per_cell = cfg.BOX_PRE_CELL
        self.__classes = cfg.CLASSES
        self.__num_class = len(cfg.CLASSES)
        self.__anchor = cfg.ANCHOR
        self.__prob_threshold = cfg.PROB_THRESHOLD
        self.__nms_threshold = cfg.NMS_THRESHOLD

        self.__yolo_input = tf.placeholder(shape=(1, self.__image_size,
                                                  self.__image_size, 3),
                                           dtype=tf.float32,
                                           name='input')
        self.__is_training = tf.placeholder(dtype=tf.bool, name='is_training')
        self.__yolo_output = Yolo().build_network(self.__yolo_input,
                                                  self.__is_training)
        self.__sess = tf.Session()
        self.__saver = tf.train.Saver(tf.global_variables())
        self.__saver.restore(self.__sess,
                             os.path.join(cfg.MODEL_DIR, cfg.MODEL_FILE))
Beispiel #18
0
def train():
    yolo = Yolo()
    yolo.load_weights("./weights/yolo")

    opt = Adam(learning_rate=5e-5)
    with open("../data/data_detect_local_train.json") as json_file:
        data = json.load(json_file)
    data_index = 0
    while str(data_index) in data:
        img = get_img("../pictures/pictures_detect_local_train/{}.png".format(
            data_index))
        true_labels, true_boxes, true_preds = get_localization_data(
            data[str(data_index)])

        def get_loss():
            preds = yolo(img)
            return calculate_loss(preds, true_labels, true_boxes, true_preds)

        opt.minimize(get_loss, [yolo.trainable_weights])

        if (data_index % 100 == 99):
            yolo.save_weights("./weights/yolo")
        data_index += 1
Beispiel #19
0
if __name__ == '__main__':
    cfgfile = "cfg/yolov3.cfg"
    weightsfile = "yolov3.weights"
    num_classes = 80

    args = arg_parse()
    confidence = float(args.confidence)
    nms_thesh = float(args.nms_thresh)

    #bbox_attrs = 5 + num_classes

    inp_dim = int(args.reso)
    assert inp_dim % 32 == 0
    assert inp_dim > 32

    yolo = Yolo(confidence, nms_thesh, args.reso, cfgfile, weightsfile, num_classes)


    # if a video path was not supplied, grab the reference to the web cam
    if not args.video:
        cap = cv2.VideoCapture(0)

    # otherwise, grab a reference to the video file
    else:
        cap = cv2.VideoCapture(args.video)

    time.sleep(1.0)

    fps = cap.get(cv2.CAP_PROP_FPS)
    assert fps > 0
Beispiel #20
0
train_dset = VOCDetection(root=data_root, split='train')
train_dloader = DataLoader(train_dset,
                           batch_size=batch_size,
                           shuffle=True,
                           drop_last=True,
                           num_workers=8)

test_dset = VOCDetection(root=data_root, split='test')
test_dloader = DataLoader(test_dset,
                          batch_size=batch_size,
                          shuffle=False,
                          drop_last=False,
                          num_workers=8)

model = Yolo(grid_size, num_boxes, num_classes)
model = model.to(device)
pretrained_weights = torch.load(pretrained_backbone_path)
model.load_state_dict(pretrained_weights)
print('loaded pretrained weight')

# Freeze the backbone network.
model.features.requires_grad_(False)
model_params = [v for v in model.parameters() if v.requires_grad is True]
optimizer = optim.SGD(model_params, lr=lr, momentum=0.9, weight_decay=5e-4)
compute_loss = Loss(grid_size, num_boxes, num_classes)

# Load the last checkpoint if exits.
ckpt_path = os.path.join(ckpt_dir, 'last.pth')

if os.path.exists(ckpt_path):
Beispiel #21
0
        "textbox": "text_field",
        "button": "button",
        "combobox": "combo_box",
        "tree": "tree",
        "list": "list",
        "scrollbar": "scroll_bar",
        "menuitem": "menu_item",
        "menu": "menu",
        "togglebutton": "toggle_button",
        "tabs": "tabs",
        "slider": "slider",
        "menuww": "menu",

    }

    yolo = Yolo()

    real_folder = cfg.data_dir + "/../mac"
    unproc_folder = real_folder + "/unproc"
    files = [
        os.path.join(dp, f)
        for dp, dn, fn in os.walk(os.path.expanduser(unproc_folder +
                                                     "/images")) for f in fn
    ]

    print(files)

    label_files = [
        (unproc_folder + "/labels/" + x[x.rfind("/") + 1:-4] + ".xml")
        for x in files
    ]
Beispiel #22
0
from yolo import Yolo
import cv2
import time


src = "videos/sample.mp4"

yolofiles = {
  "config":  "yolo-coco/yolov3.cfg",
  "weights": "yolo-coco/yolov3.weights",
  "names":   "yolo-coco/coco.names"
}


yolo = Yolo(yolofiles)

src_scale = 1
src_mirror = False
src_skip = 1

vid = cv2.VideoCapture(src)

t0 = time.time()

while True:
  count = src_skip

  while count>=1:
    count -= 1
    grabbed, image = vid.read()
Beispiel #23
0
    parser.add_argument('--use_gpu',
                        type=bool,
                        default=False,
                        help='whether to use gpu')
    args = parser.parse_args()

    device = torch.device(
        'cuda' if args.use_gpu and torch.cuda.is_available() else 'cpu')
    FloatTensor = torch.cuda.FloatTensor if args.use_gpu and torch.cuda.is_available(
    ) else torch.FloatTensor

    classes = utils.load_classes(
        args.class_path)  # Extracts class labels from file

    # Set up model
    model = Yolo().to(device)

    if args.weights_path is not None:
        # Load darknet weights
        model.load_darknet_weights(args.weights_path)

    model.eval()  # Set in evaluation mode

    # dataloader = DataLoader(
    #     ImageFolder(args.image_folder, img_size=args.img_size),
    #     batch_size=args.batch_size,
    #     shuffle=False,
    #     num_workers=args.n_cpu,
    # )

    if not os.path.exists(args.output_path):
Beispiel #24
0
from threading import Event

import torch
torch.no_grad()
torch.cuda.empty_cache()

# import our classes
import rocketvision as rv
from rocketvision.rate import Rate

from nada import Nada
from yolo import Yolo

nada = Nada()
yolo = Yolo(
    img_size=256
)  # default is 512 which yeilds about 3.8 fps (i7/940MX), 384 --> 5 fps, 256 --> 7 fps

context = zmq.Context()
socket = context.socket(zmq.PUB)
socket.connect('tcp://' + args['address'] + ':' + args['port'])

width = 1280
height = 720
displayWidth = 1280
displayHeight = 720
framerate = 30
flipmethod = 2


def gstreamer_pipeline(
Beispiel #25
0
#! /usr/bin/python3
import cv2
import sys

from detector import Detector
from yolo import Yolo

from timeit import default_timer as timer

# extract the yolo pipeline
yolo = Yolo(sys.argv[2])
vd = Detector(yolo)

if sys.argv[1] == '-i':
    filename = 'images/test4.jpg'

    image = cv2.imread(filename)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    result = vd.vehicleDetection(image)
    result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)

    cv2.imshow("result", result)
    cv2.waitKey(0)

elif sys.argv[1] == '-v':
    try:
        skip = int(sys.argv[3])
    except:
        skip = 1
    video_output = 'videos/out.mp4'
Beispiel #26
0
import logging

from yolo import Yolo
from ocr import OCR

app = Flask(__name__)

DEBUG = True

# TODO: state management and how to handle multiple request on this?
yolo = Yolo(
    img_width=1056,
    img_height=576,
    confidence_threshold=0.6,
    non_max_supress_theshold=0.4,
    classes_filename='../config/classes.names',
    model_architecture_filename="../config/yolov3_license_plates.cfg",
    model_weights_filename="../config/yolov3_license_plates_last.weights",
    output_directory='../debug/',
    output_image=True)

ocr = OCR(model_filename="../config/attention_ocr_model.pth",
          use_cuda=False,
          threshold=0.7)


@app.route('/')
def index():
    return "Live and Running!"

Beispiel #27
0
from yolo import Yolo
import json
if __name__ == "__main__":

    CONFIG_FILE = 'config.json'
    with open(CONFIG_FILE) as f:
        config = json.load(f)
    yolo = Yolo(config)
    yolo.start_training()

    # Initiate the train and test generators with data Augumentation
    # train_datagen = ImageDataGenerator(
    #     rescale=1. / 255,
    #     horizontal_flip=True,
    #     fill_mode="nearest",
    #     zoom_range=0.3,
    #     width_shift_range=0.3,
    #     height_shift_range=0.3,
    #     rotation_range=30)
    #
    # test_datagen = ImageDataGenerator(
    #     rescale=1. / 255,
    #     horizontal_flip=True,
    #     fill_mode="nearest",
    #     zoom_range=0.3,
    #     width_shift_range=0.3,
    #     height_shift_range=0.3,
    #     rotation_range=30)
    #
    # train_generator = train_datagen.flow_from_directory(
    #     train_data_dir,
Beispiel #28
0
    imgs = (images/127.5)-1

    return imgs

def convert_boxes(boxes):
    return yolo.convert_net_to_bb(boxes, filter_top=False)[0]

if __name__ == '__main__':
    # Collect events until released
    with keyboard.Listener(on_release=on_release) as listener:
        if len(sys.argv) > 1:
            cfg.window_name = sys.argv[1]

        event = 0

        yolo = Yolo()

        states = []

        runtime = round(time.time())

        output_dir = cfg.output_dir + "/" + str(runtime)

        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        if not os.path.exists(output_dir + "/images"):
            os.makedirs(output_dir + "/images")

        test_file = output_dir + "/test.txt"
Beispiel #29
0
class YoloTrain(object):
    def __init__(self):
        self.__batch_size = cfg.BATCH_SIZE
        self.__image_size = cfg.IMAGE_SIZE
        self.__cell_size = cfg.CELL_SIZE
        self.__box_per_cell = cfg.BOX_PRE_CELL
        self.__num_class = len(cfg.CLASSES)
        self.__learn_rate_base = cfg.LEARN_RATE_BASE
        self.__max_periods = cfg.MAX_PERIODS
        self.__model_dir = cfg.MODEL_DIR
        self.__model_file = cfg.MODEL_FILE
        self.__log_dir = cfg.LOG_DIR
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__save_iter = cfg.SAVE_ITER

        self.__train_data = PascalVoc('train')
        self.__test_data = PascalVoc('test')

        with tf.name_scope('input'):
            self.__samples = tf.placeholder(dtype=tf.float32,
                                            name='samples',
                                            shape=(self.__batch_size,
                                                   self.__image_size,
                                                   self.__image_size, 3))
            self.__labels = tf.placeholder(
                dtype=tf.float32,
                name='labels',
                shape=(self.__batch_size, self.__cell_size, self.__cell_size,
                       self.__box_per_cell, 5 + self.__num_class))
            self.__is_training = tf.placeholder(dtype=tf.bool,
                                                name='is_training')

        self.__yolo = Yolo()
        self.__yolo_output = self.__yolo.build_network(self.__samples,
                                                       self.__is_training)
        self.__yolo_loss = self.__yolo.loss(self.__yolo_output, self.__labels)

        with tf.name_scope('learn'):
            self.__learn_rate = tf.Variable(self.__learn_rate_base,
                                            trainable=False,
                                            name='learn_rate_base')
            moving_ave = tf.train.ExponentialMovingAverage(
                self.__moving_ave_decay).apply(tf.trainable_variables())
            optimize = tf.train.AdamOptimizer(self.__learn_rate).minimize(
                self.__yolo_loss)
            with tf.control_dependencies([optimize]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op = tf.no_op()

        with tf.name_scope('load'):
            self.__load = tf.train.Saver(tf.trainable_variables())
            self.__save = tf.train.Saver(tf.global_variables(), max_to_keep=50)

        with tf.name_scope('summary'):
            tf.summary.scalar('batch_loss', self.__yolo_loss)
            self.__summary_op = tf.summary.merge_all()
            self.__summary_writer = tf.summary.FileWriter(self.__log_dir)
            self.__summary_writer.add_graph(tf.get_default_graph())

        self.__sess = tf.Session()

    def train(self):
        self.__sess.run(tf.global_variables_initializer())
        ckpt_path = os.path.join(self.__model_dir, self.__model_file)
        print 'Restoring weights from:\t %s' % ckpt_path
        self.__load.restore(self.__sess, ckpt_path)

        for period in range(self.__max_periods):
            if period in [20, 50, 80]:
                learning_rate_value = self.__sess.run(
                    tf.assign(self.__learn_rate,
                              self.__sess.run(self.__learn_rate) / 10.0))
                print 'The value of learn rate is:\t%f' % learning_rate_value

            for step, (batch_sample,
                       batch_label) in enumerate(self.__train_data):
                _, summary_value, yolo_loss_value = self.__sess.run(
                    [self.__train_op, self.__summary_op, self.__yolo_loss],
                    feed_dict={
                        self.__samples: batch_sample,
                        self.__labels: batch_label,
                        self.__is_training: True
                    })
                if np.isnan(yolo_loss_value):
                    raise ArithmeticError('The gradient is exploded')
                if step % 10:
                    continue
                self.__summary_writer.add_summary(
                    summary_value,
                    period * len(self.__train_data) + step)
                print 'Period:\t%d\tstep:\t%d\ttrain loss:\t%.4f' % (
                    period, step, yolo_loss_value)

            if period % self.__save_iter:
                continue

            total_test_loss = 0.0
            for batch_sample, batch_label in self.__test_data:
                yolo_loss_value = self.__sess.run(self.__yolo_loss,
                                                  feed_dict={
                                                      self.__samples:
                                                      batch_sample,
                                                      self.__labels:
                                                      batch_label,
                                                      self.__is_training: False
                                                  })
                total_test_loss += yolo_loss_value
            test_loss = total_test_loss / len(self.__test_data)
            print 'Period:\t%d\ttest loss:\t%.4f' % (period, test_loss)
            saved_model_name = os.path.join(
                self.__model_dir, 'yolo.ckpt-%d-%.4f' % (period, test_loss))
            self.__save.save(self.__sess, saved_model_name)
            print 'Saved model:\t%s' % saved_model_name
        self.__summary_writer.close()
Beispiel #30
0
class Semantic_Labelling:
    def __init__(self):
        rospy.init_node('Semantic_Labelling')
        self.yolo = Yolo()
        self.bridge = CvBridge()
        self.depth_finder = Depth_Finder()
        self.img_pub = rospy.Publisher('/semantic_labels/img',
                                       Image,
                                       queue_size=10)
        self.nav_pub = rospy.Publisher('/azm_nav/semantic_label_additions',
                                       String,
                                       queue_size=10)

        info_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/camera_info',
            CameraInfo,
            self.info_callback,
            queue_size=None)
        img_subscriber = rospy.Subscriber(
            '/hsrb/head_rgbd_sensor/rgb/image_color',
            Image,
            self.img_callback,
            queue_size=1,
            buff_size=52428800)

    # Gets camera info
    def info_callback(self, msg):
        self.cam_info = msg

    # Takes the current image from the camera feed and searches for the target object, returning coordinates
    def img_callback(self, msg):
        cv_image = self.bridge.imgmsg_to_cv2(msg,
                                             desired_encoding='passthrough')

        #Respond to attribute error if subscribers haven't ran yet
        try:
            objects, img = self.yolo.search_for_objects(cv_image)
            self.img_pub.publish(
                self.bridge.cv2_to_imgmsg(img, encoding='passthrough'))
            model = PinholeCameraModel()
            model.fromCameraInfo(self.cam_info)
        except AttributeError:
            print("waiting")
            return

        if (len(objects) != 0):
            for obj in objects:
                print(obj)

                xy = obj["Point"]
                dist = self.depth_finder.get_depth(int(xy[0]), int(xy[1]))
                depth = dist[0]

                vect = model.projectPixelTo3dRay((xy[0], xy[1]))
                xyz = [el / vect[2] for el in vect]

                stampedPoint = PointStamped()
                stampedPoint.header.frame_id = "head_rgbd_sensor_rgb_frame"
                stampedPoint.point.x = xyz[0] * depth
                stampedPoint.point.y = xyz[1] * depth
                stampedPoint.point.z = depth

                rospy.wait_for_service('transform_point')
                get_3d_points = rospy.ServiceProxy('transform_point',
                                                   LocalizePoint)
                resp = get_3d_points(stampedPoint)
                #print(resp.localizedPointMap)
                threeDPoint = resp.localizedPointMap
                dictMsg = {}
                dictMsg["name"] = obj["Label"]
                dictMsg["type"] = "object"
                dictMsg["coords"] = [
                    threeDPoint.point.x, threeDPoint.point.y,
                    threeDPoint.point.z
                ]
                dictMsg["others"] = {}
                self.nav_pub.publish(json.dumps(dictMsg))

        else:
            print("No objects found.")