Beispiel #1
0
def tiny_yolo_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 model CNN body in keras.'''
    x1 = compose(
        DarknetConv2D_BN_Leaky(16, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(32, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(64, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(128, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(256, (3, 3)))(inputs)
    x2 = compose(
        MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'),
        DarknetConv2D_BN_Leaky(512, (3, 3)),
        MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'),
        DarknetConv2D_BN_Leaky(1024, (3, 3)),
        DarknetConv2D_BN_Leaky(256, (1, 1)))(x1)
    y1 = compose(DarknetConv2D_BN_Leaky(512, (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x2)
    y2 = compose(Concatenate(), DarknetConv2D_BN_Leaky(256, (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5),
                               (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
Beispiel #2
0
def make_last_layers(x, num_filters, out_filters):
    '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''
    x = compose(DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
                DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
                DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(x)
    y = compose(DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D(out_filters, (1, 1)))(x)
    return x, y
Beispiel #3
0
def yolo_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 model CNN body in Keras."""
    darknet = Model(inputs, darknet_body(inputs))
    x, y1 = make_last_layers(darknet.output, 512,
                             num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))

    return Model(inputs, [y1, y2, y3])
def make_last_layers(x, num_filters, out_filters):
    """
    6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer
    :param x: 输入层
    :param num_filters:
    :param out_filters:
    :return:
    """
    x = compose(DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
                DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D_BN_Leaky(num_filters, (1, 1)),
                DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D_BN_Leaky(num_filters, (1, 1)))(x)
    y = compose(DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)),
                DarknetConv2D(out_filters, (1, 1)))(x)
    return x, y
def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """
    Darknet Convolution2D followed by BatchNormalization and LeakyReLU.
    固件一个卷积快,conv2d+BN+Leaky
    """
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    return compose(DarknetConv2D(*args, **no_bias_kwargs),
                   BatchNormalization(), LeakyReLU(alpha=0.1))
Beispiel #6
0
def resblock_body(x, num_filters, num_blocks):
    '''A series of resblocks starting with a downsampling Convolution2D'''
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1, 0), (1, 0)))(x)
    x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x)
    for i in range(num_blocks):
        y = compose(DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)),
                    DarknetConv2D_BN_Leaky(num_filters, (3, 3)))(x)
        x = Add()([x, y])
    return x
Beispiel #7
0
def DarknetConv2D_BN_Leaky(*args, **kwargs):
    """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""
    # yolo计算最小单元
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    # 最小单元组成
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(),
        LeakyReLU(alpha=0.1))
Beispiel #8
0
def mobile_body(inputs, num_anchors, num_classes):
    mobilenet = MobileNet(input_tensor=inputs, weights='imagenet')
    f1 = mobilenet.get_layer('conv_pw_13_relu').output
    x, y1 = make_last_layers(f1, 512, num_anchors * (num_classes + 5))
    x = compose(
        DarknetConv2D_BN_Leaky(256, (1, 1)),
        UpSampling2D(2))(x)
    f2 = mobilenet.get_layer('conv_pw_11_relu').output
    x = Concatenate()([x, f2])
    x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))

    x = compose(
        DarknetConv2D_BN_Leaky(128, (1, 1)),
        UpSampling2D(2))(x)
    f3 = mobilenet.get_layer('conv_pw_5_relu').output
    x = Concatenate()([x, f3])
    x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))

    return Model(input=inputs, outputs=[y1, y2, y3])
def yolo_body(inputs, num_anchors, num_classes):
    """
    Create YOLO_V3 model CNN body in Keras.
    :param inputs: 输入层
    :param num_anchors: 一个 特征图的 anchors 数量,这里一个特征图有3个anchors
    :param num_classes: 分类数量
    :return: model 一个输入,三个输出
    """
    darknet = Model(inputs, darknet_body(inputs))
    x, y1 = make_last_layers(darknet.output, 512,
                             num_anchors * (num_classes + 5))
    # rout -4
    x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x)
    # rout -1 61
    x = Concatenate()([x, darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))

    # rout -4
    x = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x)
    # -1, 36
    x = Concatenate()([x, darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))

    return Model(inputs, [y1, y2, y3])
def resblock_body(x, num_filters, num_blocks):
    """
    A series of resblocks starting with a downsampling Convolution2D
    一个下采样快, 然后完成 shortcut
    :param x: 输入层
    :param num_filters: filters 数量
    :param num_blocks: blocks 数量
    :return:
    """
    # Darknet uses left and top padding instead of 'same' mode
    x = ZeroPadding2D(((1, 0), (1, 0)))(x)
    # 卷积快, filter=32,kernel=3*3, padding = valid, strides = 2 下采样
    x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x)
    for i in range(num_blocks):
        y = compose(DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)),
                    DarknetConv2D_BN_Leaky(num_filters, (3, 3)))(x)
        # shortcut
        x = Add()([x, y])
    return x