Beispiel #1
0
def freeze_graph(pb_file, ckpt_file):
    output_node_names = ["input/input_data", "pred_sbbox/concat_2", "pred_mbbox/concat_2", "pred_lbbox/concat_2"]
    with tf.name_scope('input'):
        input_data = tf.placeholder(dtype=tf.float32, name='input_data')

    YOLOV4(input_data, trainable=False)
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    saver = tf.train.Saver()
    saver.restore(sess, ckpt_file)
    converted_graph_def = tf.graph_util.convert_variables_to_constants(sess,
                                input_graph_def=sess.graph.as_graph_def(),
                                output_node_names=output_node_names)

    with tf.gfile.GFile(pb_file, "wb") as f:
        f.write(converted_graph_def.SerializeToString())
Beispiel #2
0
def weight2pb(darknet_weights, pb_file):
    output_node_names = [
        "input/input_data", "pred_sbbox/concat_2", "pred_mbbox/concat_2",
        "pred_lbbox/concat_2"
    ]

    with tf.name_scope('input'):
        input_data = tf.placeholder(dtype=tf.float32, name='input_data')

    YOLOV4(input_data, trainable=False)
    load_ops = load_weights(tf.global_variables(), darknet_weights)

    with tf.Session() as sess:
        sess.run(load_ops)
        output_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            sess.graph.as_graph_def(),
            output_node_names=output_node_names)

        with tf.gfile.GFile(pb_file, "wb") as f:
            f.write(output_graph_def.SerializeToString())

        print("{} ops written to {}.".format(len(output_graph_def.node),
                                             pb_file))
Beispiel #3
0
    def __init__(self):
        self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
        self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
        self.num_classes = len(self.classes)
        self.learn_rate_init = cfg.TRAIN.LEARN_RATE_INIT
        self.learn_rate_end = cfg.TRAIN.LEARN_RATE_END
        self.first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
        self.second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
        self.warmup_periods = cfg.TRAIN.WARMUP_EPOCHS
        self.initial_weight = cfg.TRAIN.INITIAL_WEIGHT
        self.time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY
        self.max_bbox_per_scale = 150
        self.train_logdir = "./data/log/train"
        self.trainset = Dataset('train')
        self.valset = Dataset('test')
        self.steps_per_period = len(self.trainset)
        self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

        with tf.name_scope('input'):
            self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')
            self.label_sbbox = tf.placeholder(dtype=tf.float32, name='label_sbbox')
            self.label_mbbox = tf.placeholder(dtype=tf.float32, name='label_mbbox')
            self.label_lbbox = tf.placeholder(dtype=tf.float32, name='label_lbbox')
            self.true_sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
            self.true_mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
            self.true_lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
            self.trainable = tf.placeholder(dtype=tf.bool, name='training')

        with tf.name_scope("define_loss"):
            iou_use = 1  # (0, 1, 2) ==> (giou_loss, diou_loss, ciou_loss)
            focal_use = False  # (False, True) ==> (normal, focal_loss)
            label_smoothing = 0  # 0.001
            self.model = YOLOV4(self.input_data, self.trainable)
            self.net_var = tf.global_variables()
            self.iou_loss, self.conf_loss, self.prob_loss = self.model.compute_loss(
                                                self.label_sbbox,  self.label_mbbox,  self.label_lbbox,
                                                self.true_sbboxes, self.true_mbboxes, self.true_lbboxes,
                                                iou_use, focal_use, label_smoothing)
            self.loss = self.iou_loss + self.conf_loss + self.prob_loss
            # self.loss = tf.Print(self.loss, [self.iou_loss, self.conf_loss, self.prob_loss], message='loss: ')

        with tf.name_scope('learn_rate'):
            self.global_step = tf.Variable(1.0, dtype=tf.float64, trainable=False, name='global_step')
            warmup_steps = tf.constant(self.warmup_periods * self.steps_per_period,
                                       dtype=tf.float64, name='warmup_steps')
            train_steps = tf.constant((self.first_stage_epochs + self.second_stage_epochs) * self.steps_per_period,
                                      dtype=tf.float64, name='train_steps')
            self.learn_rate = tf.cond(
                pred=self.global_step < warmup_steps,
                true_fn=lambda: self.global_step / warmup_steps * self.learn_rate_init,
                false_fn=lambda: self.learn_rate_end + 0.5 * (self.learn_rate_init - self.learn_rate_end) *
                                    (1 + tf.cos(
                                        (self.global_step - warmup_steps) / (train_steps - warmup_steps) * np.pi))
            )
            global_step_update = tf.assign_add(self.global_step, 1.0)

        with tf.name_scope("define_weight_decay"):
            moving_ave = tf.train.ExponentialMovingAverage(self.moving_ave_decay).apply(tf.trainable_variables())

        with tf.name_scope("define_first_stage_train"):
            self.first_stage_trainable_var_list = []
            for var in tf.trainable_variables():
                var_name = var.op.name
                var_name_mess = str(var_name).split('/')
                if var_name_mess[0] in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']:
                    self.first_stage_trainable_var_list.append(var)

            first_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
                                                    var_list=self.first_stage_trainable_var_list)
            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                with tf.control_dependencies([first_stage_optimizer, global_step_update]):
                    with tf.control_dependencies([moving_ave]):
                        self.train_op_with_frozen_variables = tf.no_op()

        with tf.name_scope("define_second_stage_train"):
            second_stage_trainable_var_list = tf.trainable_variables()
            second_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
                                                    var_list=second_stage_trainable_var_list)

            with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                with tf.control_dependencies([second_stage_optimizer, global_step_update]):
                    with tf.control_dependencies([moving_ave]):
                        self.train_op_with_all_variables = tf.no_op()

        with tf.name_scope('loader_and_saver'):
            self.loader = tf.train.Saver(self.net_var)
            self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
            # self.saver  = tf.train.Saver(tf.trainable_variables(), max_to_keep=10)

        with tf.name_scope('summary'):
            tf.summary.scalar("learn_rate", self.learn_rate)
            tf.summary.scalar("iou_loss", self.iou_loss)
            tf.summary.scalar("conf_loss", self.conf_loss)
            tf.summary.scalar("prob_loss", self.prob_loss)
            tf.summary.scalar("total_loss", self.loss)

            logdir = "./data/log/"
            if os.path.exists(logdir): shutil.rmtree(logdir)
            os.mkdir(logdir)
            self.write_op = tf.summary.merge_all()
            self.summary_writer = tf.summary.FileWriter(logdir, graph=self.sess.graph)
import tensorflow as tf
from yolov4.model import YOLOV4
from from_darknet_weights_to_ckpt import load_weights

# you need to reset graph first.
tf.reset_default_graph()

input_size = 416
darknet_weights = '/media/devin/F/Ebdatasets/keras_yolo4/model_data/yolov4.weights'
pb_file = './yolov4.pb'
output_node_names = [
    "input/input_data", "pred_sbbox/concat_2", "pred_mbbox/concat_2",
    "pred_lbbox/concat_2"
]

with tf.name_scope('input'):
    input_data = tf.placeholder(dtype=tf.float32, name='input_data')

model = YOLOV4(input_data, trainable=False)
load_ops = load_weights(tf.global_variables(), darknet_weights)

with tf.Session() as sess:
    sess.run(load_ops)
    output_graph_def = tf.graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), output_node_names=output_node_names)

    with tf.gfile.GFile(pb_file, "wb") as f:
        f.write(output_graph_def.SerializeToString())

    print("{} ops written to {}.".format(len(output_graph_def.node), pb_file))