def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): crops = [] for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string if pred.shape[0]: for c in pred[:, -1].unique(): n = (pred[:, -1] == c).sum() # detections per class s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string if show or save or render or crop: annotator = Annotator(im, example=str(self.names)) for *box, conf, cls in reversed( pred): # xyxy, confidence, class label = f'{self.names[int(cls)]} {conf:.2f}' if crop: file = save_dir / 'crops' / self.names[int( cls)] / self.files[i] if save else None crops.append({ 'box': box, 'conf': conf, 'cls': cls, 'label': label, 'im': save_one_box(box, im, file=file, save=save) }) else: # all others annotator.box_label(box, label, color=colors(cls)) im = annotator.im else: s += '(no detections)' im = Image.fromarray(im.astype(np.uint8)) if isinstance( im, np.ndarray) else im # from np if pprint: LOGGER.info(s.rstrip(', ')) if show: im.show(self.files[i]) # show if save: f = self.files[i] im.save(save_dir / f) # save if i == self.n - 1: LOGGER.info( f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}" ) if render: self.imgs[i] = np.asarray(im) if crop: if save: LOGGER.info(f'Saved results to {save_dir}\n') return crops
def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference ): source = str(source) save_img = not nosave and not source.endswith( '.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= ( pt or jit or onnx or engine ) and device.type != 'cpu' # FP16 supported on limited backends with CUDA if pt or jit: model.model.half() if half else model.model.float() # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup dt, seen = [0.0, 0.0, 0.0], 0 for path, im, im0s, vid_cap, s in dataset: t1 = time_sync() im = torch.from_numpy(im).to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # im.txt s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else ( names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Stream results im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release( ) # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix( '.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning)
def rtsp_to_mongodb(): with open("/home/asyed/airflow/dags/parameters.json") as f: parms = json.load(f) agnostic_nms = parms["agnostic_nms"] augment = parms["augment"] classes = parms["classes"] conf_thres = parms["conf_thres"] config_deepsort = parms["config_deepsort"] deep_sort_model = parms["deep_sort_model"] device = parms["device"] dnn = False evaluate = parms["evaluate"] exist_ok = parms["exist_ok"] fourcc = parms["fourcc"] half = False print(device) imgsz = parms["imgsz"] iou_thres = parms["iou_thres"] max_det = parms["max_det"] name = parms["name"] # save_vid = parms["save_vid"] #show_vid = parms["show_vid"] source = parms["source"] visualize = parms["visualize"] yolo_model = parms["yolo_model"] webcam = parms["webcam"] save_txt = parms["save_txt"] homography = np.array(parms["homography"]) url = "mongodb://localhost:27017" client = MongoClient(url) db = client.trajectory_database today_date = date.today().strftime("%m-%d-%y") new = "file_image_coordinates_" + today_date collection = db[new] cfg = get_config() cfg.merge_from_file(config_deepsort) deepsort = DeepSort(deep_sort_model, max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored # make new output folder # Load model device = select_device(device) model = DetectMultiBackend(yolo_model, device=device, dnn=dnn) stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = len(dataset) # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names if pt and device.type != 'cpu': model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.model.parameters()))) # warmup # global framess_im2 dt, seen = [0.0, 0.0, 0.0, 0.0], 0 # arr = None past = [] for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) # print("raw_frame",img.shape) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 pred = model(img, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Process detections # dets_per_img = [] for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # bbox_left = bbox_left + bbox_h bbox_top = bbox_top + bbox_h agent_data = { 'frame': int(frame_idx + 1), 'agent_id': int(id), "labels": str(names[c]), "x": int(bbox_left), "y": int(bbox_top) } print("agent", agent_data) collection.insert_one(agent_data) #db.object_detection.insert_one(agent_data) #db.pedestrian_detection_15_june.insert_one(agent_data) #db.test_21_july.insert_one(agent_data) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) else: deepsort.increment_ages() LOGGER.info('No detections') im0 = annotator.result()
def detect(opt): memory = {} counter = 0 out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, project, name, exist_ok= \ opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.name, opt.exist_ok webcam = source == '0' or source.startswith('rtsp') or source.startswith( 'http') or source.endswith('.txt') # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(deep_sort_model, torch.device("cpu"), max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET) # Initialize device = select_device(opt.device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run save_dir.mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn) stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() # Dataloader if webcam: show_vid = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # extract what is in between the last '/' and last '.' txt_file_name = source.split('/')[-1].split('.')[0] txt_path = str(Path(save_dir)) + '/' + txt_file_name + '.txt' if pt and device.type != 'cpu': model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.model.parameters()))) # warmup dt, seen = [0.0, 0.0, 0.0, 0.0], 0 regionid = set() for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if opt.visualize else False pred = model(img, augment=opt.augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det) dt[2] += time_sync() - t3 # Process detections for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... s += '%gx%g ' % img.shape[2:] # print string annotator = Annotator(im0, line_width=2, font='Arial.ttf', pil=not ascii) if det is not None and len(det): tboxes = [] indexIDs = [] previous = memory.copy() memory = {} # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 # draw boxes for visualization if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] roi = [(0, 0), (640, 0), (640, 380), (0, 380)] (x, y) = (int(bboxes[0]), int(bboxes[1])) (w, h) = (int(bboxes[2]), int(bboxes[3])) inside = cv2.pointPolygonTest(np.array(roi), (x, h), False) if inside > 0: regionid.add(id) c = int(cls) # integer class label = f' {names[c]} {conf:.2f}' cv2.putText(im0, "count =" + str(len(regionid)), (20, 50), 0, 1, (100, 200, 0), 2) annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path, 'a') as f: f.write(('%g ' * 10 + '\n') % ( frame_idx + 1, id, bbox_left, # MOT format bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) LOGGER.info(f'counter = {len(regionid)}') else: deepsort.increment_ages() LOGGER.info('No detections') # Stream results im0 = annotator.result() if show_vid: cv2.imshow(str(p), im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_vid: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \ per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_vid: print('Results saved to %s' % save_path) if platform == 'darwin': # MacOS os.system('open ' + save_path)
def detect(opt): out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, \ project, exist_ok, update, save_crop = \ opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.exist_ok, opt.update, opt.save_crop webcam = source == '0' or source.startswith( 'rtsp') or source.startswith('http') or source.endswith('.txt') # Initialize device = select_device(opt.device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Directories if type(yolo_model) is str: # single yolo model exp_name = yolo_model.split(".")[0] elif type(yolo_model) is list and len(yolo_model) == 1: # single models after --yolo_model exp_name = yolo_model[0].split(".")[0] else: # multiple models after --yolo_model exp_name = "ensemble" exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0] save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run if project name exists (save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() # Dataloader if webcam: show_vid = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) nr_sources = len(dataset) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) nr_sources = 1 vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) # Create as many trackers as there are video sources deepsort_list = [] for i in range(nr_sources): deepsort_list.append( DeepSort( deep_sort_model, device, max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, ) ) outputs = [None] * nr_sources # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # Run tracking model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup dt, seen = [0.0, 0.0, 0.0, 0.0], 0 for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() im = torch.from_numpy(im).to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False pred = model(im, augment=opt.augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det) dt[2] += time_sync() - t3 # Process detections for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # nr_sources >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count p = Path(p) # to Path s += f'{i}: ' txt_file_name = p.name save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path # video file if source.endswith(VID_FORMATS): txt_file_name = p.stem save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... # folder with imgs else: txt_file_name = p.parent.name # get folder name containing current img save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ... txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt s += '%gx%g ' % im.shape[2:] # print string imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 # draw boxes for visualization if len(outputs[i]) > 0: for j, (output, conf) in enumerate(zip(outputs[i], confs)): bboxes = output[0:4] id = output[4] cls = output[5] if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format bbox_top, bbox_w, bbox_h, -1, -1, -1, i)) if save_vid or save_crop or show_vid: # Add bbox to image c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_crop: txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else '' save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True) LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)') else: deepsort_list[i].increment_ages() LOGGER.info('No detections') # Stream results im0 = annotator.result() if show_vid: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_vid: if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \ per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_vid: s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(yolo_model) # update model (to fix SourceChangeWarning)
def detect(opt): out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate = \ opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.img_size, opt.evaluate webcam = source == '0' or source.startswith( 'rtsp') or source.startswith('http') or source.endswith('.txt') # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch') deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # Initialize device = select_device(opt.device) # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(yolo_weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size names = model.module.names if hasattr(model, 'module') else model.names # get class names if half: model.half() # to FP16 # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() if webcam: cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() save_path = str(Path(out)) # extract what is in between the last '/' and last '.' txt_file_name = source.split('/')[-1].split('.')[0] txt_path = str(Path(out)) + '/' + txt_file_name + '.txt' for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset): img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_sync() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression( pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_sync() # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s s += '%gx%g ' % img.shape[2:] # print string save_path = str(Path(out) / Path(p).name) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) # draw boxes for visualization if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path, 'a') as f: f.write(('%g ' * 10 + '\n') % (frame_idx, id, bbox_left, bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format else: deepsort.increment_ages() # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results im0 = annotator.result() if show_vid: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_vid: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) if save_txt or save_vid: print('Results saved to %s' % os.getcwd() + os.sep + out) if platform == 'darwin': # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0))
def my_gen(): # global framess_im2 dt, seen = [0.0, 0.0, 0.0, 0.0], 0 # arr = None for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) # print("raw_frame",img.shape) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 pred = model(img, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Process detections # dets_per_img = [] for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 dets_per_img = [] if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # bbox_left = bbox_left + bbox_h bbox_top = bbox_top + bbox_h pts = np.array([[bbox_left, bbox_top, 1]]) arr_per = convert_bev(pts) # print("arr_per_to", arr_per) arr_per = np.append(id, arr_per) # print("arr_per1_to", arr_per1) dets_per_img.append(arr_per) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) else: deepsort.increment_ages() arr_per = None dets_per_img = [None, None] LOGGER.info('No detections') im0 = annotator.result() if len(dets_per_img) > 1: arr_per = np.stack(dets_per_img).tolist() elif len(dets_per_img) == 1: arr_per = np.array([dets_per_img[0]]) # print("not_stack",arr_per) elif dets_per_img is None: arr_per = None if save_vid: fps, w, h = 30, im0.shape[1], im0.shape[0] cv2.putText(im0, str(frame_idx), (500, 460), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2, cv2.LINE_AA) framess = cv2.imencode( '.jpg', im0)[1].tobytes() # Remove this line for test camera if arr_per is None: yield framess else: yield framess, arr_per