Beispiel #1
0
    def make_dark(self,
                  savedir=None,
                  do_bias=True,
                  mbiaspath=None,
                  dtype='float32',
                  delimiter='-',
                  comb_kwargs=MEDCOMB_KEYS):
        """ Makes and saves dark (bias subtracted) images.
        Parameters
        ----------
        savedir: path-like, optional
            The directory where the frames will be saved.

        do_bias : bool, optional
            If ``True``, subtracts bias from dark frames using
            self.biaspahts. You can also specify ``mbiaspath`` to ignore
            that in ``self.``.

        mbiaspath : None, path-like, optional
            If you want to force a certain bias to be used, then you can
            specify its path here.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It
            is recommended to use ``float32`` or ``int16`` if there is
            no specific reason.

        comb_kwargs : dict or None, optional
            The parameters for ``combine_ccd``.
        """
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        yfu.mkdir(Path(savedir))
        darkpaths = {}

        # For simplicity, crop the original data by type_key and
        # type_val first.
        st = self.summary_raw.copy()
        for k, v in zip(self.dark_type_key, self.dark_type_val):
            st = st[st[k] == v]

        # For grouping, use _key (i.e., type_key + group_key). This is
        # because (1) it is not harmful cuz type_key will have unique
        # column values as ``st`` has already been cropped in above for
        # loop (2) by doing this we get more information from combining
        # process because, e.g., "images with ["OBJECT", "EXPTIME"] =
        # ["dark", 1.0] are loaded" will be printed rather than just
        # "images with ["EXPTIME"] = [1.0] are loaded".
        gs = st.groupby(self.dark_key)

        # Do dark combine:
        for dark_val, dark_group in gs:
            if not isinstance(dark_val, tuple):
                dark_val = tuple([dark_val])
            fname = delimiter.join([str(x) for x in dark_val]) + ".fits"
            fpath = Path(savedir) / fname

            mdark = yfu.combine_ccd(dark_group["file"].tolist(),
                                    output=None,
                                    dtype=dtype,
                                    **comb_kwargs,
                                    type_key=self.dark_key,
                                    type_val=dark_val)

            # set path to master bias
            if mbiaspath is not None:
                biaspath = mbiaspath
            elif do_bias:
                # corresponding key for biaspaths:
                corr_bias = tuple(self.bias_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.bias_group_key:
                    corr_bias += tuple(dark_group[self.bias_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    biaspath = self.biaspaths[corr_bias]
                except KeyError:
                    biaspath = None
                    warn(f"Bias not available for {corr_bias}. " +
                         "Processing without bias.")

            mdark = yfu.bdf_process(mdark,
                                    mbiaspath=biaspath,
                                    dtype=dtype,
                                    unit=None)

            mdark.write(fpath, output_verify='fix', overwrite=True)
            darkpaths[tuple(dark_val)] = fpath

        # Save list of file paths for future use.
        # It doesn't take much storage and easy to erase if you want.
        with open(self.listdir / 'darkpaths.list', 'w+') as ll:
            for p in list(darkpaths.values()):
                ll.write(f"{str(p)}\n")

        with open(self.listdir / 'darkpaths.pkl', 'wb') as pkl:
            pickle.dump(darkpaths, pkl)

        self.darkpaths = darkpaths
Beispiel #2
0
    def make_flat(self,
                  savedir=None,
                  do_bias=True,
                  do_dark=True,
                  mbiaspath=None,
                  mdarkpath=None,
                  comb_kwargs=MEDCOMB_KEYS,
                  delimiter='-',
                  dtype='float32'):
        '''Makes and saves flat images.
        Parameters
        ----------
        savedir: path-like, optional
            The directory where the frames will be saved.

        do_bias, do_dark : bool, optional
            If ``True``, subtracts bias and dark frames using
            ``self.biaspahts`` and ``self.darkpaths``. You can also
            specify ``mbiaspath`` and/or ``mdarkpath`` to ignore those
            in ``self.``.

        mbiaspath, mdarkpath : None, path-like, optional
            If you want to force a certain bias or dark to be used, then
            you can specify its path here.

        comb_kwargs: dict or None, optional
            The parameters for ``combine_ccd``.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It
            is recommended to use ``float32`` or ``int16`` if there is
            no specific reason.
        '''
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        yfu.mkdir(savedir)
        flatpaths = {}

        # For simplicity, crop the original data by type_key and
        # type_val first.
        st = self.summary_raw.copy()
        for k, v in zip(self.flat_type_key, self.flat_type_val):
            st = st[st[k] == v]

        # For grouping, use type_key + group_key. This is because (1) it
        # is not harmful cuz type_key will have unique column values as
        # ``st`` has already been cropped in above for loop (2) by doing
        # this we get more information from combining process because,
        # e.g., "images with ["OBJECT", "EXPTIME"] = ["dark", 1.0] are
        # loaded" will be printed rather than just "images with
        # ["EXPTIME"] = [1.0] are loaded".
        gs = st.groupby(self.flat_key)

        # Do flat combine:
        for flat_val, flat_group in gs:
            # set path to master bias
            if mbiaspath is not None:
                biaspath = mbiaspath
            elif do_bias:
                # corresponding key for biaspaths:
                corr_bias = tuple(self.bias_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.bias_group_key:
                    corr_bias += tuple(flat_group[self.bias_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                biaspath = self.biaspaths[corr_bias]
                try:
                    biaspath = self.biaspaths[corr_bias]
                except KeyError:
                    biaspath = None
                    warn(f"Bias not available for {corr_bias}. " +
                         "Processing without bias.")

            # set path to master dark
            if mdarkpath is not None:
                darkpath = mdarkpath
            elif do_dark:
                # corresponding key for darkpaths:
                corr_dark = tuple(self.dark_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.dark_group_key:
                    corr_dark += tuple(flat_group[self.dark_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    darkpath = self.darkpaths[corr_dark]
                except (KeyError):
                    darkpath = None
                    warn(f"Dark not available for {corr_dark}. " +
                         "Processing without dark.")

            # Do BD preproc before combine
            flat_bd_paths = []
            for i, flat_row in flat_group.iterrows():
                flat_orig_path = Path(flat_row["file"])
                flat_bd_path = (flat_orig_path.parent /
                                (flat_orig_path.stem + "_BD.fits"))
                ccd = yfu.load_ccd(flat_orig_path, unit='adu')
                _ = yfu.bdf_process(ccd,
                                    output=flat_bd_path,
                                    mbiaspath=biaspath,
                                    mdarkpath=darkpath,
                                    dtype="int16",
                                    overwrite=True,
                                    unit=None)
                flat_bd_paths.append(flat_bd_path)

            if not isinstance(flat_val, tuple):
                flat_val = tuple([flat_val])
            fname = delimiter.join([str(x) for x in flat_val]) + ".fits"
            fpath = Path(savedir) / fname

            _ = yfu.combine_ccd(
                flat_bd_paths,
                output=fpath,
                dtype=dtype,
                **comb_kwargs,
                normalize_average=True,  # Since skyflat!!
                type_key=self.flat_key,
                type_val=flat_val)

            flatpaths[tuple(flat_val)] = fpath

        # Save list of file paths for future use.
        # It doesn't take much storage and easy to erase if you want.
        with open(self.listdir / 'flatpaths.list', 'w+') as ll:
            for p in list(flatpaths.values()):
                ll.write(f"{str(p)}\n")

        with open(self.listdir / 'flatpaths.pkl', 'wb') as pkl:
            pickle.dump(flatpaths, pkl)

        self.flatpaths = flatpaths
Beispiel #3
0
    def make_bias(self,
                  savedir=None,
                  delimiter='-',
                  dtype='float32',
                  comb_kwargs=MEDCOMB_KEYS):
        ''' Finds and make bias frames.
        Parameters
        ----------
        savedir : path-like, optional.
            The directory where the frames will be saved.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It is
            recommended to use ``float32`` or ``int16`` if there is no
            specific reason.

        comb_kwargs: dict or None, optional.
            The parameters for `~ysfitsutilpy.combine_ccd`.
        '''
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        yfu.mkdir(Path(savedir))
        biaspaths = {}
        # For simplicity, crop the original data by type_key and
        # type_val first.
        st = self.summary_raw.copy()
        for k, v in zip(self.bias_type_key, self.bias_type_val):
            st = st[st[k] == v]

        # For grouping, use _key (i.e., type_key + group_key). This is
        # because (1) it is not harmful cuz type_key will have unique
        # column values as ``st`` has already been cropped in above for
        # loop (2) by doing this we get more information from combining
        # process because, e.g., "images with ["OBJECT", "EXPTIME"] =
        # ["dark", 1.0] are loaded" will be printed rather than just
        # "images with ["EXPTIME"] = [1.0] are loaded".
        gs = st.groupby(self.bias_key)

        # Do bias combine:
        for bias_val, bias_group in gs:
            if not isinstance(bias_val, tuple):
                bias_val = tuple([str(bias_val)])
            fname = delimiter.join([str(x) for x in bias_val]) + ".fits"
            fpath = Path(savedir) / fname
            _ = yfu.combine_ccd(bias_group["file"].tolist(),
                                output=fpath,
                                dtype=dtype,
                                **comb_kwargs,
                                type_key=self.bias_key,
                                type_val=bias_val)
            biaspaths[tuple(bias_val)] = fpath

        # Save list of file paths for future use.
        # It doesn't take much storage and easy to erase if you want.
        with open(self.listdir / 'biaspaths.list', 'w+') as ll:
            for p in list(biaspaths.values()):
                ll.write(f"{str(p)}\n")

        with open(self.listdir / 'biaspaths.pkl', 'wb') as pkl:
            pickle.dump(biaspaths, pkl)

        self.biaspaths = biaspaths