Beispiel #1
0
    def locate_neighbors(self, grid, ci):
        r"""Given a grid and cell index, finds the 26 neighbor grids
        and cell indices.

        Parameters
        ----------
        grid: Grid Object
            Grid containing the cell of interest
        ci: array-like
            The cell index of the cell of interest

        Returns
        -------
        grids: Numpy array of Grid objects
        cis: List of neighbor cell index tuples

        Both of these are neighbors that, relative to the current cell
        index (i,j,k), are ordered as:

        (i-1, j-1, k-1), (i-1, j-1, k ), (i-1, j-1, k+1), ...
        (i-1, j  , k-1), (i-1, j  , k ), (i-1, j  , k+1), ...
        (i+1, j+1, k-1), (i-1, j-1, k ), (i+1, j+1, k+1)

        That is they start from the lower left and proceed to upper
        right varying the third index most frequently. Note that the
        center cell (i,j,k) is omitted.

        """
        ci = np.array(ci)
        center_dds = grid.dds
        position = grid.LeftEdge + (np.array(ci) + 0.5) * grid.dds
        grids = np.empty(26, dtype="object")
        cis = np.empty([26, 3], dtype="int64")
        offs = 0.5 * (center_dds + self.sdx)

        new_cis = ci + steps
        in_grid = np.all((new_cis >= 0) * (new_cis < grid.ActiveDimensions),
                         axis=1)
        new_positions = position + steps * offs
        new_positions = [periodic_position(p, self.ds) for p in new_positions]
        grids[in_grid] = grid

        get_them = np.argwhere(in_grid).ravel()
        cis[in_grid] = new_cis[in_grid]

        if (in_grid).sum() > 0:
            grids[np.logical_not(in_grid)] = [
                self.ds.index.grids[self.locate_brick(new_positions[i]).grid -
                                    self._id_offset] for i in get_them
            ]
            cis[np.logical_not(in_grid)] = [
                (new_positions[i] - grids[i].LeftEdge) / grids[i].dds
                for i in get_them
            ]
        cis = [tuple(_ci) for _ci in cis]
        return grids, cis
    def locate_neighbors(self, grid, ci):
        r"""Given a grid and cell index, finds the 26 neighbor grids
        and cell indices.

        Parameters
        ----------
        grid: Grid Object
            Grid containing the cell of interest
        ci: array-like
            The cell index of the cell of interest

        Returns
        -------
        grids: Numpy array of Grid objects
        cis: List of neighbor cell index tuples

        Both of these are neighbors that, relative to the current cell
        index (i,j,k), are ordered as: 
        
        (i-1, j-1, k-1), (i-1, j-1, k ), (i-1, j-1, k+1), ...  
        (i-1, j  , k-1), (i-1, j  , k ), (i-1, j  , k+1), ...  
        (i+1, j+1, k-1), (i-1, j-1, k ), (i+1, j+1, k+1)

        That is they start from the lower left and proceed to upper
        right varying the third index most frequently. Note that the
        center cell (i,j,k) is ommitted.
        
        """
        ci = np.array(ci)
        center_dds = grid.dds
        position = grid.LeftEdge + (np.array(ci)+0.5)*grid.dds
        grids = np.empty(26, dtype='object')
        cis = np.empty([26,3], dtype='int64')
        offs = 0.5*(center_dds + self.sdx)

        new_cis = ci + steps
        in_grid = np.all((new_cis >=0)*
                         (new_cis < grid.ActiveDimensions),axis=1)
        new_positions = position + steps*offs
        new_positions = [periodic_position(p, self.ds) for p in new_positions]
        grids[in_grid] = grid
                
        get_them = np.argwhere(in_grid != True).ravel()
        cis[in_grid] = new_cis[in_grid]

        if (in_grid != True).sum()>0:
            grids[in_grid != True] = \
                [self.ds.index.grids[self.locate_brick(new_positions[i]).grid -
                                 self._id_offset]
                 for i in get_them]
            cis[in_grid != True] = \
                [(new_positions[i]-grids[i].LeftEdge)/
                 grids[i].dds for i in get_them]
        cis = [tuple(ci) for ci in cis]
        return grids, cis
Beispiel #3
0
def surfacePressureEnergy(clump):
    steps = np.array([[-1, -1, -1], [-1, -1, 0], [-1, -1, 1], [-1, 0, -1],
                      [-1, 0, 0], [-1, 0, 1], [-1, 1, -1], [-1, 1, 0],
                      [-1, 1, 1], [0, -1, -1], [0, -1, 0], [0, -1, 1],
                      [0, 0, -1], [0, 0, 1], [0, 1, -1], [0, 1, 0], [0, 1, 1],
                      [1, -1, -1], [1, -1, 0], [1, -1, 1], [1, 0, -1],
                      [1, 0, 0], [1, 0, 1], [1, 1, -1], [1, 1, 0], [1, 1, 1]])

    mag = np.sqrt((steps**2).sum(axis=1))
    mag = np.array([mag, mag, mag]).T.astype(float)
    normals = -steps / mag

    neighborsTrue = np.ones([3, 3, 3], bool)
    neighborsTrue[1, 1, 1] = False

    ds = clump.data.ds
    amrTree = clump.data.tiles
    cm = clump.quantities.center_of_mass()

    LE = clump.data.tiles.data_source.base_object.left_edge
    RE = clump.data.tiles.data_source.base_object.right_edge
    newLE = LE - (RE - LE) / 10
    newRE = RE + (RE - LE) / 10
    biggerBox = ds.box(newLE, newRE)
    amrTree = AMRKDTree(ds, data_source=biggerBox)

    surfPressureTerm = 0

    grid_mask_dict = dict((g, m) for g, m in clump.data.blocks)

    pad = 2

    # dictionary to keep track of surface cells that have been
    # visited and the corresponding grid they were visited from.
    allSurfCells = {'cell': [], 'grid': []}

    for grid, clumpMask in clump.data.blocks:
        print(grid)
        # Get surface cells using masks
        surfMask = np.zeros(np.array(clumpMask.shape) + 2 * pad, dtype=bool)
        L = surfMask.shape[0] - pad
        W = surfMask.shape[1] - pad
        H = surfMask.shape[2] - pad

        surfMask[2:L, 2:W, 2:H] = clumpMask
        padClumpMask = surfMask.copy()
        for i in [-1, 0, 1]:
            for j in [-1, 0, 1]:
                for k in [-1, 0, 1]:
                    surfMask[pad + i:L + i, pad + j:W + j,
                             pad + k:H + k] |= clumpMask

        surfMask = np.logical_xor(surfMask, padClumpMask)

        surfCells_fromPad = np.argwhere(surfMask)
        surfCells = surfCells_fromPad - np.array([pad, pad, pad])
        surfInGrid = np.all((surfCells >= 0) * (surfCells < clumpMask.shape),
                            axis=1)
        surfOutGrid = np.logical_not(surfInGrid)

        # *** Think about looping over surfInGrid surfOutGrid separately *** #
        for cell in surfCells:
            surfNormals = []
            cell = np.array(cell)
            center_dds = grid.dds

            # get physical position of surface cell
            position = grid.LeftEdge + (np.array(cell) + 0.5) * grid.dds
            new_position = periodic_position(position, ds)
            r = position - cm

            # get cooresponding grid that surface cell lives in as well as its
            # indicies relatvie to that grid.
            trueGrid = ds.index.grids[ amrTree.locate_brick(new_position).grid  \
                                       - grid._id_offset]
            trueCell = ((new_position - trueGrid.LeftEdge) / trueGrid.dds).v
            trueCell = tuple(trueCell.astype(int))

            # if surface cell has already been visited in a different grid loop,
            # then we have already accounted for the surface pressure from that cell
            # and we can skip it.
            skip = False
            for g, c in zip(allSurfCells['grid'], allSurfCells['cell']):
                if (not (np.array(c) -
                         np.array(trueCell)).sum()) and grid.id != g:
                    skip = True
                    break
            if skip:
                continue

            allSurfCells['cell'].append(trueCell)
            allSurfCells['grid'].append(grid.id)

            #print("\tgrid, trueGrid", grid, trueGrid)
            #print("\tcell, trueCell", cell, trueCell)

            # if trueCell is part of the clump in trueGrid it is not actually
            # a surface cell and we can skip it. Also if trueGrid is not in
            # grid_mask_dict, that means trueCell is not in this clump and is
            # a true surface cells
            possiblyInClump = False
            try:
                trueClumpMask = grid_mask_dict[trueGrid]
                possiblyInClump = True
            except:
                pass

            trueCellInClump = False
            if possiblyInClump:
                #print("\ttrue cell", trueCell, " in clump?")
                trueCellMask = np.zeros_like(trueClumpMask)
                trueCellMask[trueCell] = True
                trueCellInClump = np.logical_and(trueCellMask,
                                                 trueClumpMask).any()

            if trueCellInClump:
                # not a true surface cell, continue to next one
                #print("\t\tYES. Next surface cell")
                continue
            #print("\t\tNO. True surface cell")

            # if we made it here we have a true surface cell. We know need
            # the pressure and the surface normals of all the cells in the
            # clump it is touching.
            pressure = trueGrid['pressure'][trueCell]
            dS = grid.dds[0] * grid.dds[0]

            # find grid and cell indicies of neighboring cells
            # which may be in separate grids
            cell = np.array(cell)
            center_dds = grid.dds
            grids = np.empty(26, dtype='object')
            neigborCells = np.empty([26, 3], dtype='int64')
            offs = 0.5 * (center_dds + amrTree.sdx)
            new_neigborCells = cell + steps

            # index mask for cells this in grid
            in_grid = np.all( (new_neigborCells >=0) * \
                              (new_neigborCells < grid.ActiveDimensions),
                               axis=1 )

            # index mask for cells in a neighboring grid
            not_in_grid = np.logical_not(in_grid)

            # physical positions of neighboring cells (assumes a periodic box)
            new_positions = position + steps * offs
            new_positions = [periodic_position(p, ds) for p in new_positions]

            grids[in_grid] = grid
            neigborCells[in_grid] = new_neigborCells[in_grid]

            # neigboring cell indicies of cells that are in other grids
            get_them = np.argwhere(not_in_grid).ravel()

            if not_in_grid.any():
                # get grids containing cells outside current grids
                grids[get_them] = \
                [ds.index.grids[amrTree.locate_brick(new_positions[i]).grid - \
                    grid._id_offset] for i in get_them ]

                # get cell location indicies in grids outside current grid
                neigborCells[not_in_grid] = \
                    [ (new_positions[i] - grids[i].LeftEdge)/grids[i].dds \
                        for i in get_them ]

                neigborCells = [tuple(_cs) for _cs in neigborCells]

            # find which neigbor cells are in the clump. We only care about
            # neighbor cells that are within the clump becaause we need to
            # know the normal vectors for those ones.
            #print("\t\tFind neigbor cells within clump")
            for nGrid, nCell, norm in zip(grids, neigborCells, normals):
                nCell = tuple(nCell)
                #print("\t\tnCell, nGrid", nCell, nGrid)
                try:
                    nClumpMask = grid_mask_dict[nGrid]
                except:
                    # if nGrid is not in dict of grids for this clump,
                    #  then nCell cannot be in this clump
                    continue

                # is nCell in nClump?
                nCellMask = np.zeros_like(nClumpMask)
                nCellMask[nCell] = True
                inClump = np.logical_and(nCellMask, nClumpMask).any()

                if inClump:
                    #print("\t\t\tIN clump")
                    surfNormals.append(norm)
                #else:
                #print("\t\t\tNOT in clump")

            surfNormals = np.array(surfNormals)

            rs = ds.arr(np.empty_like(surfNormals), r.units)
            rs[:] = r

            # surface pressure term = Integrate{ p r dot dS }
            r_dot_dS = (rs * surfNormals).sum(axis=1) * dS
            surfPressureTerm += (pressure * r_dot_dS).sum()
            #print(surfPressureTerm.to('erg'))

    return surfPressureTerm