Beispiel #1
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False

    sc = Scene()

    # add a volume: select a sphere
    center = (0, 0, 0)
    R = (5.e8, 'cm')

    dd = ds.sphere(center, R)

    vol = VolumeSource(dd, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1280, 720)
    cam.position = 1.5 * ds.arr(np.array([5.e8, 5.e8, 5.e8]), 'cm')

    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    sc.render()
    sc.save("subchandra_test.png", sigma_clip=6.0)
    sc.save_annotated(
        "subchandra_test_annotated.png",
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Maestro simulation of He convection on a white dwarf",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])
Beispiel #2
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('gas', 'velocity_z')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-1.e7, -5.e6, 5.e6, 1.e7]
    sigma = 5.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1920, 1080)

    center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)

    cam.position = [2.5*ds.domain_right_edge[0],
                    2.5*ds.domain_right_edge[1],
                    center[2]+0.25*ds.domain_right_edge[2]]
    
    # look toward the center -- we are dealing with an octant
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=4.0)
    sc.save_annotated("{}_radvel_annotated.png".format(plotfile),
                      sigma_clip=4.0, 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of convection in a mixed H/He XRB",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Beispiel #3
0
# Add temperature

field = "temperature"

vol2 = create_volume_source(ds, field=field)
vol2.use_ghost_zones = True

tf = yt.ColorTransferFunction([4.5, 7.5])
tf.clear()
tf.add_layers(4, 0.02, alpha=np.logspace(-0.2, 0, 4), colormap="autumn")

vol2.set_transfer_function(tf)
sc.add_source(vol2)

# setup the camera

cam = sc.add_camera(ds, lens_type="perspective")
cam.resolution = (1600, 900)
cam.zoom(20.0)

# Render the image.

sc.render()

sc.save_annotated(
    "render_two_fields_tf.png",
    sigma_clip=6.0,
    tf_rect=[0.88, 0.15, 0.03, 0.8],
    render=False,
)
Beispiel #4
0
def vol_render_density(outfile, ds):
    """Volume render the density given a yt dataset."""

    import numpy as np
    import yt
    import matplotlib
    matplotlib.use('agg')
    from yt.visualization.volume_rendering.api import Scene, VolumeSource
    import matplotlib.pyplot as plt

    ds.periodicity = (True, True, True)

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # Add a volume: select a sphere

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # Transfer function

    vals = [-1, 0, 1, 2, 3, 4, 5, 6, 7]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()

    cm = "spectral"

    for v in vals:
        if v < 3:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)

    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    width = ds.domain_width

    # Set the camera so that we're looking down on the xy plane from a 45
    # degree angle. We reverse the y-coordinate since yt seems to use the
    # opposite orientation convention to us (where the primary should be
    # on the left along the x-axis). We'll scale the camera position based
    # on a zoom factor proportional to the width of the domain.

    zoom_factor = 0.75

    cam_position = np.array([
        center[0], center[1] - zoom_factor * width[1],
        center[2] + zoom_factor * width[2]
    ])

    cam.position = zoom_factor * ds.arr(cam_position, 'cm')

    # Set the normal vector so that we look toward the center.

    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0.0, 0.0, 1.0])
    cam.set_width(width)

    # Render the image.

    sc.render()

    # Save the image without annotation.

    sc.save(outfile, sigma_clip=6.0)

    # Save the image with a colorbar.

    sc.save_annotated(outfile.replace(".png", "_colorbar.png"), sigma_clip=6.0)

    # Save the image with a colorbar and the current time.

    sc.save_annotated(outfile.replace(".png", "_colorbar_time.png"),
                      sigma_clip=6.0,
                      text_annotate=[[
                          (0.05, 0.925),
                          "t = {:.2f} s".format(float(ds.current_time.d)),
                          dict(horizontalalignment="left", fontsize="20")
                      ]])
Beispiel #5
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    center = (0, 0, 0)
    R = (5.e8, 'cm')

    dd = ds.sphere(center, R)

    vol = VolumeSource(dd, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1280, 720)
    cam.position = 1.5*ds.arr(np.array([5.e8, 5.e8, 5.e8]), 'cm')
    
    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    sc.render()
    sc.save("subchandra_test.png", sigma_clip=6.0)
    sc.save_annotated("subchandra_test_annotated.png", 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of He convection on a white dwarf",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Beispiel #6
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    cm = "coolwarm"

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True
        
    sc = Scene()


    # add a volume: select a sphere
    vol = VolumeSource(ds, field=field)
    sc.add_source(vol)


    # transfer function
    vals = [-1, 0, 1, 2, 4, 5, 6, 7]
    #vals = [0.1, 1.0, 10, 100., 1.e4, 1.e5, 1.e6, 1.e7]
    sigma = 0.1

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    cm = "spectral"
    for v in vals:
        if v < 4:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

        
    cam = Camera(ds, lens_type="perspective")
    cam.resolution = (1280, 720)
    cam.position = 1.5*ds.arr(np.array([0.0, 5.e9, 5.e9]), 'cm')
    
    # look toward the center -- we are dealing with an octant
    center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    pid = plotfile.split("plt")[1]
    sc.render()
    sc.save("wdmerger_{}.png".format(pid), sigma_clip=6.0)
    sc.save_annotated("wdmerger_annotated_{}.png".format(pid), 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {:.3f}".format(float(ds.current_time.d)),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Castro simulation of merging white dwarfs",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Beispiel #7
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-1, 0, 1, 2, 3, 4, 5, 6, 7]
    #vals = [0.1, 1.0, 10, 100., 1.e4, 1.e5, 1.e6, 1.e7]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    cm = "spectral"
    for v in vals:
        if v < 3:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)
    cam.position = 1.5 * ds.arr(np.array([0.0, 5.e9, 5.e9]), 'cm')

    # look toward the center -- we are dealing with an octant
    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    pid = plotfile.split("plt")[1]
    sc.render()
    sc.save("wdmerger_{}_new.png".format(pid), sigma_clip=6.0)
    sc.save_annotated(
        "wdmerger_annotated_{}_new.png".format(pid),
        text_annotate=
        [[(0.05, 0.05), "t = {:.3f} s".format(float(ds.current_time.d)),
          dict(horizontalalignment="left")],
         [(0.5, 0.95),
          "Castro simulation of merging white dwarfs (0.6 $M_\odot$ + 0.9 $M_\odot$)",
          dict(color="y", fontsize="22", horizontalalignment="center")],
         [(0.95, 0.05), "M. Katz et al.",
          dict(color="w", fontsize="16", horizontalalignment="right")]])
Beispiel #8
0
def doit(plotfile):

    ds = CastroDataset(plotfile)
    ds._periodicity = (True, True, True)

    field = ('boxlib', 'enuc')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = create_volume_source(ds.all_data(), field=field)
    sc.add_source(vol)

    # transfer function
    vals = [16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()

    cmap = "viridis"

    for v in vals:
        if v < 19.0:
            alpha = 0.25
        else:
            alpha = 0.75

        tf.sample_colormap(v, sigma**2, alpha=alpha, colormap=cmap)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1280)

    # view 1

    cam.position = [
        0.75 * ds.domain_right_edge[0],
        0.5 * (ds.domain_left_edge[1] + ds.domain_right_edge[1]),
        ds.domain_right_edge[2]
    ]  # + 0.25 * (ds.domain_right_edge[2] - ds.domain_left_edge[2])]

    # look toward the center
    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    # set the center in the vertical direction to be the height of the underlying base layer
    center[-1] = 2000 * cm

    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(3 * ds.domain_width)
    cam.zoom(3.0)
    sc.camera = cam

    sc.save_annotated(
        "{}_Hnuc_annotated_side.png".format(plotfile),
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Castro simulation of XRB flame spreading",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])

    # view 2

    dx = ds.domain_right_edge[0] - ds.domain_left_edge[0]
    cam.position = [
        0.5 * (ds.domain_left_edge[0] + ds.domain_right_edge[0]) + 0.0001 * dx,
        0.5 * (ds.domain_left_edge[1] + ds.domain_right_edge[1]),
        ds.domain_right_edge[2]
    ]  # + 0.25 * (ds.domain_right_edge[2] - ds.domain_left_edge[2])]

    # look toward the center
    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    # set the center in the vertical direction to be the height of the underlying base layer
    center[-1] = 2000 * cm

    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(3 * ds.domain_width)
    cam.zoom(0.6)
    sc.camera = cam

    sc.save_annotated(
        "{}_Hnuc_annotated_top.png".format(plotfile),
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Castro simulation of XRB flame spreading",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])
Beispiel #9
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('gas', 'velocity_z')
    ds._get_field_info(field).take_log = False

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-1.e7, -5.e6, 5.e6, 1.e7]
    sigma = 5.e5

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)

    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)

    cam.position = [
        2.5 * ds.domain_right_edge[0], 2.5 * ds.domain_right_edge[1],
        center[2] + 0.25 * ds.domain_right_edge[2]
    ]

    # look toward the center -- we are dealing with an octant
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=4.0)
    sc.save_annotated(
        "{}_radvel_annotated.png".format(plotfile),
        sigma_clip=4.0,
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Maestro simulation of convection in a mixed H/He XRB",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])
Beispiel #10
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1080, 1080)
    cam.position = 1.0*ds.domain_right_edge
    
    # look toward the center -- we set this depending on whether the plotfile
    # indicates it was an octant
    try: octant = ds.parameters["octant"]
    except: octant = True

    if octant:
        center = ds.domain_left_edge
    else:
        center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)

    # unit vector connecting center and camera
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=6.0)
    sc.save_annotated("{}_radvel_annotated.png".format(plotfile), 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of He convection on a white dwarf",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Beispiel #11
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'Hnuc')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    sc.add_source(vol)

    # transfer function
    vals = [14, 14.5, 15, 15.5, 16]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()

    cm = "viridis"

    for v in vals:
        if v < 15.5:
            alpha = 0.1
        else:
            alpha = 0.75

        tf.sample_colormap(v, sigma**2, alpha=alpha, colormap=cm)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1080, 1080)
    cam.position = 1.0 * ds.domain_right_edge

    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(0.5 * ds.domain_width)
    cam.zoom(1.5)
    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_Hnuc".format(plotfile), sigma_clip=4.0)
    sc.save_annotated(
        "{}_Hnuc_annotated.png".format(plotfile),
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95), "MAESTROeX simulation of ECSN convection",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])