Beispiel #1
0
def build_graph(graph_data, weight_fxn):

    is_directed = False
    if 'directed' in graph_data:
        is_directed = graph_data['directed'] == 1

    # TODO detect if graphs are bipartite and support that

    G = None
    if is_directed:
        G = DiGraph()
    else:
        G = Graph()

    # TODO: Load graph attributes

    # add nodes
    if 'node' in graph_data:
        nodes = graph_data['node']
        if type(nodes) != list:
            raise ZenException, 'The node attribute of a graph must be a list'

        for node in nodes:
            # node must have an 'id'
            if 'id' not in node:
                raise ZenException, 'Node is missing the id attribute (node = %s)' % str(
                    node)
            node_idx = node['id']

            # collect and verify all the node properties
            standard_keys = set(['id', 'name', 'zenData'])
            node_data = {}
            node_obj = None
            zen_data = None
            for key, val in node.items():
                if key == 'id':
                    node_idx = val
                    if type(val) != int or val < 0:
                        raise ZenException, 'Node id attribute must be a positive integer (node = %s)' % str(
                            node)

                elif key == 'name':
                    node_obj = val
                    if type(val
                            ) != str:  # enforce types on standard attributes
                        raise ZenException, 'Node name attribute must be a string (node = %s)' % str(
                            node)

                elif key == 'label':
                    if node_obj is None:  # give preference to 'name' as source of node_obj
                        node_obj = val
                    if type(val) != str:
                        raise ZenException, 'Node label attribute must be a string (node = %s)' % str(
                            node)

                elif key == 'zenData':
                    zen_data = val

                else:
                    node_data[
                        key] = val  # node_data is dict of all other attributes

            # if zenData is only other attribute aside from those handled above _set_ to node_data else _append_
            if zen_data is not None:
                if len(node_data) == 0:
                    node_data = zen_data
                else:
                    node_data['zenData'] = zen_data

            elif len(node_data) == 0:
                node_data = None

            if is_directed:
                G.add_node_x(node_idx, G.edge_list_capacity,
                             G.edge_list_capacity, node_obj, node_data)
            else:
                G.add_node_x(node_idx, G.edge_list_capacity, node_obj,
                             node_data)

    # add edges
    if 'edge' in graph_data:
        edges = graph_data['edge']
        if type(edges) != list:
            raise ZenException, 'The edge attibute of a graph must be a list'

        for edge in edges:

            # make sure source and target are specified
            source = None
            target = None
            if 'source' not in edge:
                raise ZenException, 'Edge is missing the source attribute (edge = %s)' % str(
                    edge)

            if 'target' not in edge:
                raise ZenException, 'Edge is missing the target attribute (edge = %s)' % str(
                    edge)

            weight = 1
            edge_idx = None
            zen_data = None
            edge_data = {}

            for key, val in edge.items():
                if key == 'id':
                    edge_idx = val
                    if type(val) != int:
                        raise ZenException, 'Edge id attribute must be a positive integer (edge = %s)' % str(
                            edge)

                elif key == 'source':
                    source = val
                    if type(val) != int or val < 0:
                        raise ZenException, 'Edge source attribute must be a positive integer (edge = %s)' % str(
                            edge)

                elif key == 'target':
                    target = val
                    if type(val) != int or val < 0:
                        raise ZenException, 'Edge target attribute must be a positive integer (edge = %s)' % str(
                            edge)

                elif key == 'weight':
                    weight = float(val)

                elif key == 'zenData':
                    zen_data = val

                else:
                    edge_data[
                        key] = val  # edge_data is dict of all other attributes

            # give precedence to a weight-getting function if provided
            if weight_fxn != None:
                weight = weight_fxn(edge)

            # if zenData is only other attribute aside from those handled above _set_ to edge_data else _append_
            if zen_data is not None:
                if len(edge_data) == 0:
                    edge_data = zen_data
                else:
                    edge_data['zenData'] = zen_data

            elif len(edge_data) == 0:
                edge_data = None

            if edge_idx != None:
                G.add_edge_x(edge_idx, source, target, edge_data, weight)
            else:
                G.add_edge_(source, target, edge_data, weight)

    return G
Beispiel #2
0
def read_str(sbuffer, **kwargs):
    """
	Read graph data from the ascii string in the binary edge list format.
	
	**Args**:
		``sbuffer`` is the string from which the network data will be read.
	
	**KwArgs**:
		* ``node_obj_fxn [= str]``: unlike the default definition, this function accepts integers and returns the node object
	
		* ``directed [= False]`` (boolean): indicates whether the data is read as directed
	
		* ``ignore_duplicate_edges [= False]`` (boolean): applies only when loading an undirected graph. If True, then a check will be made to ensure that
	  	  no duplicate edges are attempted to be added (in case the underlying graph was originally directed).  Checking incurs a small
	  	  performance cost due to the check.
	
	**Returns**:
		:py:class:`zen.Graph` or :py:class:`zen.DiGraph`.  The graph read from the input string.  The ``directed`` parameter decides
		whether a directed or undirected graph is constructed.
	"""

    # handle the keyword arguments
    node_obj_fxn = kwargs.pop('node_obj_fxn', str)
    directed = kwargs.pop('directed', False)
    check_for_duplicates = kwargs.pop('ignore_duplicate_edges', False)

    if len(kwargs) > 0:
        raise ZenException, 'Unknown keyword arguments: %s' % ', '.join(
            kwargs.keys())

    if check_for_duplicates and directed:
        raise ZenException, 'ignore_duplicate_edges can only be set when directed = False'

    # build the graph
    G = None
    if directed == True:
        G = DiGraph()
    elif directed == False:
        G = Graph()
    else:
        raise ZenException, 'directed must be either True or False.'

    #####
    # convert the string into a bitvector
    bv = BitVector(size=len(sbuffer) * 8)
    offset = 0
    for c in sbuffer:
        v = ord(c)
        dec2bv(v, bv, offset, 8)
        offset += 8

    #####
    # read the header
    offset = 0

    # read the version
    version = bv2dec(bv, offset, VERSION_LEN)
    offset += VERSION_LEN

    if version != 1:
        raise Exception, 'Invalid file format or version number'

    # read the num of indexes
    last_idx = bv2dec(bv, offset, NUM_INDEX_LEN)
    idx_size = int(math.ceil(math.log(last_idx + 1, 2)))

    offset += NUM_INDEX_LEN
    idx2node = [None] * (last_idx + 1)

    # build all nodes right now
    if node_obj_fxn is not None:
        for x in xrange(last_idx + 1):
            n = node_obj_fxn(x)
            G.add_node(n)
    else:
        G.add_nodes(last_idx + 1)

    # read the number of edges
    num_edges = bv2dec(bv, offset, NUM_EDGES_LEN)
    offset += NUM_EDGES_LEN

    #####
    # Read the content: every edge
    if directed:
        for ei in xrange(num_edges):
            idx1 = bv2dec(bv, offset, idx_size)
            offset += idx_size
            idx2 = bv2dec(bv, offset, idx_size)
            offset += idx_size

            G.add_edge_(idx1, idx2)
    else:
        for ei in xrange(num_edges):
            idx1 = bv2dec(bv, offset, idx_size)
            offset += idx_size
            idx2 = bv2dec(bv, offset, idx_size)
            offset += idx_size

            if check_for_duplicates and G.has_edge_(idx1, idx2):
                continue

            G.add_edge_(idx1, idx2)

    # done!
    return G
Beispiel #3
0
def read_str(sbuffer, **kwargs): #node_fxn=lambda x: x, edge_fxn=None, G = UNDIRECTED, build_all_nodes = False):
	"""
	Read graph data from the ascii string in the binary edge list format.
	"""
	
	# handle the keyword arguments
	node_obj_fxn = kwargs.pop('node_obj_fxn',str)
	directed = kwargs.pop('directed',False)
	check_for_duplicates = kwargs.pop('check_for_duplicates',False)
	
	if len(kwargs) > 0:
		raise ZenException, 'Unknown keyword arguments: %s' % ', '.join(kwargs.keys())
	
	if check_for_duplicates and directed:
		raise ZenException, 'check_for_duplicates can only be set when directed = False'
		
	# build the graph
	G = None
	if directed == True:
		G = DiGraph()
	elif directed == False:
		G = Graph()
	else:
		raise ZenException, 'directed must be either True or False.'
	
	#####
	# convert the string into a bitvector
	bv = BitVector(size = len(sbuffer) * 8)
	offset = 0
	for c in sbuffer:
		v = ord(c)
		dec2bv(v,bv,offset,8)
		offset += 8
		
	#####
	# read the header
	offset = 0
	
	# read the version
	version = bv2dec(bv,offset,VERSION_LEN)
	offset += VERSION_LEN
	
	if version != 1:
		raise Exception, 'Invalid file format or version number'
	
	# read the num of indexes
	last_idx = bv2dec(bv,offset,NUM_INDEX_LEN)
	idx_size = int(math.ceil(math.log(last_idx+1,2)))
	
	offset += NUM_INDEX_LEN
	idx2node = [None] * (last_idx + 1)
	
	# build all nodes right now
	if node_obj_fxn is not None:
		for x in xrange(last_idx+1):
			n = node_obj_fxn(x)
			G.add_node(n)
	else:
		G.add_nodes(last_idx+1)
	
	# read the number of edges
	num_edges = bv2dec(bv,offset,NUM_EDGES_LEN)
	offset += NUM_EDGES_LEN
	
	#####
	# Read the content: every edge
	if directed:
		for ei in xrange(num_edges):
			idx1 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			idx2 = bv2dec(bv,offset,idx_size)
			offset += idx_size
				
			G.add_edge_(idx1,idx2)
	else:
		for ei in xrange(num_edges):
			idx1 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			idx2 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			
			if check_for_duplicates and G.has_edge_(idx1,idx2):
				continue
				
			G.add_edge_(idx1,idx2)		
	
	# done!	
	return G
Beispiel #4
0
def read_str(sbuffer, **kwargs):
	"""
	Read graph data from the ascii string in the binary edge list format.
	
	**Args**:
		``sbuffer`` is the string from which the network data will be read.
	
	**KwArgs**:
		* ``node_obj_fxn [= str]``: unlike the default definition, this function accepts integers and returns the node object
	
		* ``directed [= False]`` (boolean): indicates whether the data is read as directed
	
		* ``ignore_duplicate_edges [= False]`` (boolean): applies only when loading an undirected graph. If True, then a check will be made to ensure that
	  	  no duplicate edges are attempted to be added (in case the underlying graph was originally directed).  Checking incurs a small
	  	  performance cost due to the check.
	
	**Returns**:
		:py:class:`zen.Graph` or :py:class:`zen.DiGraph`.  The graph read from the input string.  The ``directed`` parameter decides
		whether a directed or undirected graph is constructed.
	"""
	
	# handle the keyword arguments
	node_obj_fxn = kwargs.pop('node_obj_fxn',str)
	directed = kwargs.pop('directed',False)
	check_for_duplicates = kwargs.pop('ignore_duplicate_edges',False)
	
	if len(kwargs) > 0:
		raise ZenException, 'Unknown keyword arguments: %s' % ', '.join(kwargs.keys())
	
	if check_for_duplicates and directed:
		raise ZenException, 'ignore_duplicate_edges can only be set when directed = False'
		
	# build the graph
	G = None
	if directed == True:
		G = DiGraph()
	elif directed == False:
		G = Graph()
	else:
		raise ZenException, 'directed must be either True or False.'
	
	#####
	# convert the string into a bitvector
	bv = BitVector(size = len(sbuffer) * 8)
	offset = 0
	for c in sbuffer:
		v = ord(c)
		dec2bv(v,bv,offset,8)
		offset += 8
		
	#####
	# read the header
	offset = 0
	
	# read the version
	version = bv2dec(bv,offset,VERSION_LEN)
	offset += VERSION_LEN
	
	if version != 1:
		raise Exception, 'Invalid file format or version number'
	
	# read the num of indexes
	last_idx = bv2dec(bv,offset,NUM_INDEX_LEN)
	idx_size = int(math.ceil(math.log(last_idx+1,2)))
	
	offset += NUM_INDEX_LEN
	idx2node = [None] * (last_idx + 1)
	
	# build all nodes right now
	if node_obj_fxn is not None:
		for x in xrange(last_idx+1):
			n = node_obj_fxn(x)
			G.add_node(n)
	else:
		G.add_nodes(last_idx+1)
	
	# read the number of edges
	num_edges = bv2dec(bv,offset,NUM_EDGES_LEN)
	offset += NUM_EDGES_LEN
	
	#####
	# Read the content: every edge
	if directed:
		for ei in xrange(num_edges):
			idx1 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			idx2 = bv2dec(bv,offset,idx_size)
			offset += idx_size
				
			G.add_edge_(idx1,idx2)
	else:
		for ei in xrange(num_edges):
			idx1 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			idx2 = bv2dec(bv,offset,idx_size)
			offset += idx_size
			
			if check_for_duplicates and G.has_edge_(idx1,idx2):
				continue
				
			G.add_edge_(idx1,idx2)		
	
	# done!	
	return G
Beispiel #5
0
def build_graph(graph_data,weight_fxn):
	
	is_directed = False
	if 'directed' in graph_data:
		is_directed = graph_data['directed'] == 1
	
	# TODO detect if graphs are bipartite and support that
		
	G = None
	if is_directed:
		G = DiGraph()
	else:
		G = Graph()
		
	# TODO: Load graph attributes
		
	# add nodes
	if 'node' in graph_data:
		nodes = graph_data['node']
		if type(nodes) != list:
			raise ZenException, 'The node attribute of a graph must be a list'
			
		for node in nodes:	
			# node must have an 'id'
			if 'id' not in node:
				raise ZenException, 'Node is missing the id attribute (node = %s)' % str(node)
			node_idx = node['id']
				
			# collect and verify all the node properties
			standard_keys = set(['id', 'name', 'zenData'])
			node_data = {}
			node_obj = None
			zen_data = None
			for key, val in node.items():
				if key == 'id':
					node_idx = val
					if type(val) != int or val < 0:
						raise ZenException, 'Node id attribute must be a positive integer (node = %s)' % str(node)

				elif key == 'name':
					node_obj = val
					if type(val) != str: # enforce types on standard attributes
						raise ZenException, 'Node name attribute must be a string (node = %s)' % str(node)

				elif key == 'label':
					if node_obj is None: 	# give preference to 'name' as source of node_obj
						node_obj = val
					if type(val) != str:
						raise ZenException, 'Node label attribute must be a string (node = %s)' % str(node)

				elif key == 'zenData':
					zen_data = val
				
				else:	
					node_data[key] = val 	# node_data is dict of all other attributes

			# if zenData is only other attribute aside from those handled above _set_ to node_data else _append_
			if zen_data is not None:
				if len(node_data) == 0:
					node_data = zen_data
				else:
					node_data['zenData'] = zen_data
			
			elif len(node_data) == 0:
				node_data = None
								
			if is_directed:
				G.add_node_x(node_idx,G.edge_list_capacity,G.edge_list_capacity,node_obj,node_data)
			else:
				G.add_node_x(node_idx,G.edge_list_capacity,node_obj,node_data)
			
	# add edges
	if 'edge' in graph_data:
		edges = graph_data['edge']
		if type(edges) != list:
			raise ZenException, 'The edge attibute of a graph must be a list'
		
		for edge in edges:
			
			# make sure source and target are specified
			source = None
			target = None
			if 'source' not in edge:
				raise ZenException, 'Edge is missing the source attribute (edge = %s)' % str(edge)
			
			if 'target' not in edge:
				raise ZenException, 'Edge is missing the target attribute (edge = %s)' % str(edge)
			
			weight = 1
			edge_idx = None
			zen_data = None
			edge_data = {}
			
			for key, val in edge.items():
				if key == 'id':
					edge_idx = val
					if type(val) != int:
						raise ZenException, 'Edge id attribute must be a positive integer (edge = %s)' % str(edge)
				
				elif key == 'source':
					source = val
					if type(val) != int or val < 0:
						raise ZenException, 'Edge source attribute must be a positive integer (edge = %s)' % str(edge)
				
				elif key == 'target':
					target = val
					if type(val) != int or val < 0:
						raise ZenException, 'Edge target attribute must be a positive integer (edge = %s)' % str(edge)
				
				elif key == 'weight':
					weight = float(val)
				
				elif key == 'zenData':
					zen_data = val
			
				else: 
					edge_data[key] = val 	# edge_data is dict of all other attributes
			
			# give precedence to a weight-getting function if provided
			if weight_fxn != None:
				weight = weight_fxn(edge)
			
			# if zenData is only other attribute aside from those handled above _set_ to edge_data else _append_
			if zen_data is not None:
				if len(edge_data) == 0:
					edge_data = zen_data
				else:
					edge_data['zenData'] = zen_data

			elif len(edge_data) == 0:
				edge_data = None;
		
			if edge_idx != None:
				G.add_edge_x(edge_idx,source,target,edge_data,weight)
			else:
				G.add_edge_(source,target,edge_data,weight)
			
			
				
	return G