Beispiel #1
0
	def arcCheck(self):

		if len(self.arcPoints)>4: # if more than the maximum of 4 points have been given, determine which to use
			if float(int(float(len(self.arcPoints)-1)/3.0))==float(len(self.arcPoints)-1)/3.0: #divisible by 3
				self.arcPoints=\
				[
					self.arcPoints[0],
					self.arcPoints[int((len(self.arcPoints)-1)/3.0)], # 1/3
					self.arcPoints[int((2*len(self.arcPoints)-1)/3.0)], # 2/3
					self.arcPoints[-1]
				]
			elif float(int(float(len(self.arcPoints)-1)/2.0))==float(len(self.arcPoints)-1)/2.0: #even
				self.arcPoints=\
				[
					self.arcPoints[0],
					self.arcPoints[int(float(len(self.arcPoints)-1)/2.0)], # 1/2
					self.arcPoints[int(float(len(self.arcPoints)-1)/2.0)], # 1/2
					self.arcPoints[-1]
				]
			else:
				self.arcPoints=\
				[
					self.arcPoints[0],
					self.arcPoints[int(float(len(self.arcPoints)-1)/2.0)], # 1/2-
					self.arcPoints[int(float(len(self.arcPoints)-1)/2.0)+1], # 1/2+
					self.arcPoints[-1]
				]

		# check to see that all the points are not on the same vector ( co-linear )
		vA=vB=vC=cD=[]
		realArcPoints=self.arcPoints[:]
		mp=midPoint(self.arcPoints[0],self.arcPoints[-1])

		dist=distanceBetween(self.arcPoints[0],self.arcPoints[-1])
		zp=dist/1000
		offsets=[[self.poleVector[0]*zp,self.poleVector[1]*zp,self.poleVector[2]*zp],(0,zp,0),(0,0,zp),(zp,0,0)]
		for i in range(1,10):
			for offset in offsets:
				if len(self.arcPoints)>2:
					vA=normalize(self.arcPoints[1][0]-self.arcPoints[0][0],self.arcPoints[1][1]-self.arcPoints[0][1],self.arcPoints[1][2]-self.arcPoints[0][2])
					vB=normalize(self.arcPoints[-1][0]-self.arcPoints[1][0],self.arcPoints[-1][1]-self.arcPoints[1][1],self.arcPoints[-1][2]-self.arcPoints[1][2])
					vC=normalize(self.arcPoints[-2][0]-self.arcPoints[0][0],self.arcPoints[-2][1]-self.arcPoints[0][1],self.arcPoints[-2][2]-self.arcPoints[0][2])
					vD=normalize(self.arcPoints[-1][0]-self.arcPoints[-2][0],self.arcPoints[-1][1]-self.arcPoints[-2][1],self.arcPoints[-1][2]-self.arcPoints[-2][2])
				if distanceBetween(vA,vB)<zp/4 or distanceBetween(vC,vD)<zp/4 or len(self.arcPoints)==2:
					self.arcPoints=realArcPoints[:]
					if len(self.arcPoints)==2:
						 self.arcPoints=[self.arcPoints[0],[],self.arcPoints[-1]]
					self.arcPoints[1]=(mp[0]+offset[0]*i,mp[1]+offset[1]*i,mp[2]+offset[2]*i)
				else:
					break
			if distanceBetween(vA,vB)<zp/4 or distanceBetween(vC,vD)<zp/4 or len(self.arcPoints)==2: break
Beispiel #2
0
	def __init__(self,*args,**keywords):

		#check to make sure unique names are used in scene
		uniqueNames(iterable(mc.ls(type='dagNode')),re=True)

		# default options
		self.radius=1
		self.arcWeight=.75
		self.handles=['ArcIKCtrl#']
		self.parent=['|']
		self.handleType=['doubleEllipse']
		self.handleOptions=[{}]
		self.softParent=['']
		self.name=''
		self.squash=20
		self.stretch=20
		self.width=1
		self.allowScale=False # not functional
		self.minWidth=0
		self.maxWidth=5
		self.spread=False #requires ribs
		self.curl=False #requires ribs
		self.wrap=False

		self.shortNames=\
		{
			'n':'name',
			'ht':'handleType',
			'ho':'handleOptions',
			'sp':'softParent',
			'p':'parent',
			'spr':'spread',
			'c':'curl'
		}

		# attributes
		self.handleShape=['']
		self.parentSpace=['']

		for k in keywords:
			if k in self.__dict__:
				exec('self.'+k+'=keywords[k]')
			elif k in self.shortNames:
				exec('self.'+self.shortNames[k]+'=keywords[k]')

		self.handles=iterable(self.handles)
		self.parent=iterable(self.parent)
		self.handleType=iterable(self.handleType)
		self.softParent=iterable(self.softParent)
		self.name=iterable(self.name)
		if isinstance(self.handleOptions,dict):
			self.handleOptions=[self.handleOptions]

		# parse arguments
		if len(args)==0: args=mc.ls(sl=True,fl=True)

		sel=[]
		for a in args:
			sel.extend(iterable(a))

		self.jointHierarchy=hierarchyBetween([sel[0],sel[-1]],type='joint')

		if ('radius' not in keywords) and ('r' not in keywords):
			hDist=distanceBetween(self.jointHierarchy[0],self.jointHierarchy[-1])
			self.radius=hDist/3

		self.ArcCtrl=ArcCtrl\
		(
			self.jointHierarchy,
			p=[self.jointHierarchy[0],'.'],
			stretch=self.stretch,
			squash=self.squash,
			arcWeight=self.arcWeight,
			createSurface=True,
			scaleLength=True
		)

		self.constrainJoints()
		self.mkControlObjects()

		self[:]=self.handles
Beispiel #3
0
    def addInfluences(self, *influences, **keywords):

        controlObjects = [""]
        baseShapes = [""]
        wrapSmoothness = [1]
        nurbsSamples = [10]
        smooth = -1
        smoothType = 0
        influences = list(influences)

        shortNames = {"co": "controlObjects"}

        for k in keywords:
            if k in locals():
                exec(k + "=keywords[k]")
            elif k in shortNames:
                exec(shortNames[k] + "=keywords[k]")

        controlObjects = iterable(controlObjects)
        baseShapes = iterable(baseShapes)
        wrapSmoothness = iterable(wrapSmoothness)
        nurbsSamples = iterable(nurbsSamples)

        if self.influences == influences:
            self.influences = []
        else:
            influencesHold = influences
            for inf in influencesHold:
                if inf in self.influences:
                    influences.remove(inf)
                else:
                    self.influences.append(inf)

        while len(controlObjects) < len(influences):
            controlObjects.append(controlObjects[-1])
        while len(baseShapes) < len(influences):
            baseShapes.append(baseShapes[-1])
        while len(wrapSmoothness) < len(influences):
            wrapSmoothness.append(wrapSmoothness[-1])
        while len(nurbsSamples) < len(influences):
            nurbsSamples.append(nurbsSamples[-1])

        for i in range(0, len(influences)):

            bsh = baseShapes[i]
            inf = influences[i]
            ctrlObj = controlObjects[i]
            nurbsSample = self.nurbsSamples[i]
            wrapSmooth = self.wrapSmoothness[i]
            infFaces = []
            infSourceShape = ""
            infShape = ""
            infTr = ""
            shapeType = ""

            if isinstance(inf, basestring):

                if len(inf.split(".")) > 1:

                    shapeType = str(mc.getAttr(inf, type=True))

                    if (
                        len(iterable(mc.ls(inf, o=True, type="dagNode"))) > 0
                        and len(iterable(mc.listRelatives(mc.ls(inf, o=True), p=True))) > 0
                    ):
                        infTr = mc.listRelatives(mc.ls(inf, o=True), p=True)[0]
                        infShape = shape(infTr)
                    else:
                        infShapeHist = iterable(mc.ls(iterable(mc.listHistory(inf, f=True, af=True)), type="shape"))
                        if len(infShapeHist) > 0:
                            infShape = infShapeHist[0]
                            infTr = mc.listRelatives(infShape, p=True)

                else:

                    shapeType = mc.nodeType(inf)
                    infShape = infSourceShape = inf
                    infTr = mc.listRelatives(inf, p=True)

            elif isIterable(inf):

                infShape = mc.ls(inf, o=True)[0]
                infTr = mc.listRelatives(infShape, p=True)[0]
                shapeType = mc.nodeType(infShape)

                if mc.nodeType(infShape) == "mesh":

                    inf = mc.polyListComponentConversion(inf, tf=True)

                    inputComponents = []
                    for fStr in inf:
                        inputComponents.append(fStr.split(".")[-1])

                    pco = mc.createNode("polyChipOff")
                    mc.setAttr(pco + ".dup", True)
                    mc.setAttr(pco + ".inputComponents", len(inputComponents), type="componentList", *inputComponents)
                    mc.connectAttr(infShape + ".outMesh", pco + ".ip")

                    psep = mc.createNode("polySeparate")
                    mc.setAttr(psep + ".ic", 2)
                    mc.connectAttr(pco + ".out", psep + ".ip")

                    inf = psep + ".out[1]"

                    if not (isinstance(bsh, basestring) and mc.objExists(bsh)):

                        bshSource = ""

                        for m in removeAll(infShape, mc.ls(iterable(mc.listHistory(infShape)), type="mesh")):

                            if (
                                len(mc.ls(m + ".vtx[*]", fl=True)) == len(mc.ls(infShape + ".vtx[*]", fl=True))
                                and len(mc.ls(m + ".f[*]", fl=True)) == len(mc.ls(infShape + ".f[*]", fl=True))
                                and len(mc.ls(m + ".e[*]", fl=True)) == len(mc.ls(infShape + ".e[*]", fl=True))
                                and len(removeAll(m, mc.listHistory(m))) == 0
                            ):
                                isBSTarget = False
                                for bsConn in iterable(mc.listConnections(m, type="blendShape", p=True)):
                                    if "inputTarget" in ".".join(bsConn.split(".")[1:]):
                                        isBSTarget = True
                                        break
                                if isBSTarget:
                                    continue
                                else:
                                    bshSource = m
                                    break

                        if bshSource == "":

                            bshSource = mc.createNode("mesh", p=infTr)
                            mc.connectAttr(infShape + ".outMesh", bshSource + ".inMesh")
                            mc.blendShape(infShape, bshSource, w=[1, 1])
                            mc.delete(bshSource, ch=True)
                            mc.setAttr(bshSource + ".io", True)

                        pco = mc.createNode("polyChipOff")
                        mc.setAttr(pco + ".dup", True)
                        mc.setAttr(
                            pco + ".inputComponents", len(inputComponents), type="componentList", *inputComponents
                        )
                        mc.connectAttr(bshSource + ".outMesh", pco + ".ip")

                        psep = mc.createNode("polySeparate")
                        mc.setAttr(psep + ".ic", 2)
                        mc.connectAttr(pco + ".out", psep + ".ip")

                        bsh = psep + ".out[1]"

                else:

                    inf = infShape

            plug = firstOpenPlug(self[0] + ".basePoints")

            if isinstance(inf, basestring) and mc.objExists(inf):

                if len(inf.split(".")) <= 1:

                    if mc.nodeType(shape(inf)) == "mesh":
                        inf = shape(inf) + ".outMesh"
                    else:
                        inf = shape(inf) + ".local"

            if isinstance(bsh, basestring) and mc.objExists(bsh):

                if len(bsh.split(".")) <= 1:

                    if mc.nodeType(shape(bsh)) == "mesh":
                        bsh = shape(bsh) + ".outMesh"
                    else:
                        bsh = shape(bsh) + ".local"

            else:

                bshShape = mc.createNode(shapeType)

                if shapeType == "mesh":
                    mc.connectAttr(inf, bshShape + ".inMesh")
                    mc.blendShape(infShape, bshShape, w=(1, 1))
                    mc.delete(bshShape, ch=True)
                    bsh = bsh + ".outMesh"
                else:
                    mc.connectAttr(inf, bshShape + ".create")
                    mc.blendShape(infShape, bshShape, w=(1, 1))
                    mc.delete(bshShape, ch=True)
                    bsh = bsh + ".local"

                mc.setAttr(bshShape + ".io", True)

                # mc.connectAttr(inf,self[0]+'.driverPoints['+str(plug)+']',f=True)
                # mc.connectAttr(bsh,self[0]+'.basePoints['+str(plug)+']',f=True

                # poly smooth
            if shapeType == "mesh":

                pspInf = mc.createNode("polySmoothProxy")
                mc.setAttr(pspInf + ".kb", False)
                mc.connectAttr(inf, pspInf + ".ip")
                inf = pspInf + ".out"

                pspBase = mc.createNode("polySmoothProxy")
                mc.setAttr(pspBase + ".kb", False)
                mc.connectAttr(bsh, pspBase + ".ip")
                bsh = pspBase + ".out"

            mc.connectAttr(inf, self[0] + ".driverPoints[" + str(plug) + "]", f=True)
            mc.connectAttr(bsh, self[0] + ".basePoints[" + str(plug) + "]", f=True)

            # add wrap control attributes

            if not mc.objExists(ctrlObj):
                ctrlObj = infTr

            if shapeType == "mesh":

                if not "wrapSmoothLevels" in mc.listAttr(ctrlObj):
                    mc.addAttr(ctrlObj, ln="wrapSmoothLevels", at="short", dv=0)

                mc.setAttr(ctrlObj + ".wrapSmoothLevels", k=False, cb=True)
                mc.connectAttr(ctrlObj + ".wrapSmoothLevels", pspInf + ".el")
                mc.connectAttr(ctrlObj + ".wrapSmoothLevels", pspBase + ".el")
                mc.connectAttr(ctrlObj + ".wrapSmoothLevels", pspInf + ".ll")
                mc.connectAttr(ctrlObj + ".wrapSmoothLevels", pspBase + ".ll")

                if not "wrapSmoothType" in mc.listAttr(ctrlObj):
                    mc.addAttr(
                        ctrlObj, ln="wrapSmoothType", at="enum", en="exponential:linear", min=0, max=1, dv=smoothType
                    )

                mc.setAttr(ctrlObj + ".wrapSmoothType", k=False, cb=True)
                mc.connectAttr(ctrlObj + ".wrapSmoothType", pspInf + ".mth")
                mc.connectAttr(ctrlObj + ".wrapSmoothType", pspBase + ".mth")

                if not "inflType" in mc.listAttr(ctrlObj):
                    mc.addAttr(ctrlObj, ln="inflType", at="enum", en="none:point:face", min=1, max=2, dv=2)

                mc.setAttr(ctrlObj + ".inflType", k=False, cb=True)
                mc.connectAttr(ctrlObj + ".inflType", self[0] + ".inflType[" + str(plug) + "]")

            else:
                if not "nurbsSamples" in mc.listAttr(ctrlObj):
                    mc.addAttr(ctrlObj, ln="nurbsSamples", at="short", dv=nurbsSample)

                mc.setAttr(ctrlObj + ".nurbsSamples", k=False, cb=True)
                mc.connectAttr(ctrlObj + ".nurbsSamples", self[0] + ".nurbsSamples[" + str(plug) + "]")

            if self.calculateMaxDistance:

                greatestDistance = 0.0

                if shapeType == "mesh":

                    distCheckMesh = mc.createNode("mesh", p=infTr)
                    mc.connectAttr(inf, distCheckMesh + ".inMesh")

                    deformedCP = ""
                    if mc.nodeType(shape(self.deformed[0])) == "mesh":
                        deformedCP = mc.createNode("closestPointOnMesh")
                        mc.connectAttr(self.deformed[0] + ".worldMesh[0]", deformedCP + ".im")
                    elif mc.nodeType(shape(self.deformed[0])) == "nurbsCurve":
                        deformedCP = mc.createNode("closestPointOnCurve")
                        mc.connectAttr(self.deformed[0] + ".worldSpace", deformedCP + ".ic")
                    elif mc.nodeType(shape(self.deformed[0])) == "nurbsSurface":
                        deformedCP = mc.createNode("closestPointOnSurface")
                        mc.connectAttr(self.deformed[0] + ".worldSpace", deformedCP + ".is")

                    for f in mc.ls(distCheckMesh + ".f[*]", fl=True):

                        center = midPoint(f)
                        mc.setAttr(deformedCP + ".ip", *center)
                        closestPoint = mc.getAttr(deformedCP + ".p")[0]
                        distance = distanceBetween(closestPoint, center)

                        if distance > greatestDistance:
                            greatestDistance = distance

                    mc.disconnectAttr(inf, distCheckMesh + ".inMesh")
                    mc.delete(distCheckMesh)

                if greatestDistance * 2 > mc.getAttr(self[0] + ".maxDistance"):
                    mc.setAttr(self[0] + ".maxDistance", greatestDistance * 2)

            if shapeType == "mesh":

                if smooth >= 0:

                    mc.setAttr(ctrlObj + ".wrapSmoothLevels", smooth)

                elif mc.nodeType(shape(self.deformed[0])) == "mesh":

                    faceCount = 0
                    for d in self.deformed:
                        if mc.nodeType(shape(d)) == "mesh":
                            faceCount += len(mc.ls(shape(d) + ".f[*]", fl=True))

                    smoothSampleMesh = mc.createNode("mesh", p=infTr)
                    mc.connectAttr(inf, smoothSampleMesh + ".inMesh")

                    smoothFaceCount = 0
                    n = 0

                    while len(mc.ls(smoothSampleMesh + ".f[*]", fl=True)) < faceCount:
                        mc.setAttr(ctrlObj + ".wrapSmoothLevels", n)
                        n += 1

                    if len(mc.ls(smoothSampleMesh + ".f[*]", fl=True)) > faceCount * 1.5:
                        mc.setAttr(ctrlObj + ".wrapSmoothLevels", mc.getAttr(ctrlObj + ".wrapSmoothLevels") - 1)

                    mc.disconnectAttr(inf, smoothSampleMesh + ".inMesh")
                    mc.delete(smoothSampleMesh)
Beispiel #4
0
	def __init__(self,*args,**keywords):

		# default options

		self.name='limb'
		self.stretch=20
		self.squash=0
		self.twist=True # performs auto detect
		self.sway=True
		self.switch='ik' # initial ik/fk switch state
		self.handleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]
		self.tol=1.0 # angle tolerance for preferred angles
		self.parent=''

		self.shortNames=\
		{
			'n':'name',
			'p':'parent',
			'sp':'softParent',
			'co':'controlObjects',
			'ho':'handleOptions'
		}

		# attributes

		self.controlObjects=['','','','']
		self.bindPoses=[]
		self.joints=[]
		self.group=''
		self.orientAxis=''
		self.bendAxis=''
		self.poleAxis=''
		self.ctrlJoints=[]
		self.handles=[]
		self.endEffector=''
		self.ikHandle=''
		self.jointParent=''
		self.jointParent=''
		self.originalRotations={}
		self.bendDirection=0
		self.poleVector=[]
		self.poleVectorWorld=[]
		self.upVector=[]
		self.aimVector=[]
		self.parentSpaces=[]

		for k in keywords:

			if k in self.__dict__:
				exec('self.'+k+'=keywords[k]')
			elif k in self.shortNames:
				exec('self.'+self.shortNames[k]+'=keywords[k]')

		uniqueNames(re=True)

		if len(args)==0:
			args=mc.ls(sl=True)

		sel=[]
		for a in args:
			sel.extend(iterable(a))
		sel=hierarchyOrder(sel)

		# parse options

		defualtHandleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]

		i=len(self.handleOptions)
		while len(self.handleOptions)<4:
			self.handleOption.append(defualtHandleOptions[i])
			i+=1

		if isinstance(self.handleOptions,dict):
			self.handleOptions=[self.handleOptions,self.handleOptions,self.handleOptions]
		elif isIterable(self.handleOptions):
			if len(self.handleOptions)==0:
				self.handleOptions.append({})
			while len(self.handleOptions)<3:
				self.handleOptions.append(self.handleOptions[-1])
		else:
			self.handleOptions=[{},{},{}]

		self.controlObjects=iterable(self.controlObjects)
		self.orientAxis=self.orientAxis.lower()

		self.baseTwist=''
		self.hierarchy=[]
		if len(sel)>2:
			for j in sel[:-1]:
				if len(hierarchyBetween(j,sel[-1]))>len(self.hierarchy):
					self.hierarchy=hierarchyBetween(j,sel[-1])
			closest=9e999
			for s in removeAll([self.hierarchy[0],self.hierarchy[-1]],sel):
				if\
				(
					len(iterable(mc.listRelatives(self.hierarchy[0],p=True)))==0 or
					s in mc.listRelatives(mc.listRelatives(self.hierarchy[0],p=True)[0],c=True,type='joint')
				):
					dist=distanceBetween(s,self.hierarchy[0])
					if dist<closest:
						closest=dist
						self.baseTwist=s
		else:
			self.hierarchy=hierarchyBetween(sel[0],sel[-1])

		self.bindPoses=iterable(getBindPoses(self.hierarchy))

		self.joints=['','','']

		if len(self.hierarchy)<3:
			raise Exception('There are no joints between your start and end joint. No IK created.')

		self.joints[0]=self.hierarchy[0]
		self.joints[-1]=self.hierarchy[-1]

		# find the orientation axis

		self.orientAxis='x'
		axisLen={'x':0,'y':0,'z':0}
		for j in self.hierarchy[1:]:
			for a in ['x','y','z']:
				axisLen[a]+=abs(mc.getAttr(j+'.t'+a))
				if axisLen[a]>axisLen[self.orientAxis]:
					self.orientAxis=a

		# find bend joint and pole vector

		self.originalRotations={}

		for j in self.hierarchy[1:-1]: # check to see if any have a non-zero preferred angle
			for a in removeAll(self.orientAxis,['x','y','z']):
				if abs(mc.getAttr(j+'.pa'+a))>=self.tol:
					self.originalRotations[j+'.r'+a]=mc.getAttr(j+'.r'+a)
					mc.setAttr(j+'.r'+a,mc.getAttr(j+'.pa'+a))
		greatestAngle=0
		for j in self.hierarchy[1:-1]:
			jPos=mc.xform(j,q=True,ws=True,rp=True)
			prevJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)-1],q=True,ws=True,rp=True)
			nextJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)+1],q=True,ws=True,rp=True)
			vAngle=mc.angleBetween(v1=normalize(jPos[0]-prevJPos[0],jPos[1]-prevJPos[1],jPos[2]-prevJPos[2]),v2=normalize(nextJPos[0]-jPos[0],nextJPos[1]-jPos[1],jPos[2]-jPos[2]))[-1]
			if abs(vAngle)>greatestAngle:
				greatestAngle=abs(vAngle)
				self.joints[1]=j

		mp=midPoint\
		(
			self.hierarchy[0],self.hierarchy[-1],
			bias=\
			(
				distanceBetween(self.hierarchy[0],self.joints[1])/
				(distanceBetween(self.hierarchy[0],self.joints[1])+distanceBetween(self.joints[1],self.hierarchy[-1]))
			)
		)

		bendPoint=mc.xform(self.joints[1],q=True,ws=True,rp=True)

		self.poleVectorWorld=normalize\
		(
			bendPoint[0]-mp[0],
			bendPoint[1]-mp[1],
			bendPoint[2]-mp[2]
		)

		pmm=mc.createNode('pointMatrixMult')
		mc.setAttr(pmm+'.vm',True)
		mc.connectAttr(self.joints[1]+'.worldInverseMatrix',pmm+'.im')
		mc.setAttr(pmm+'.ip',*self.poleVectorWorld)

		self.poleVector=mc.getAttr(pmm+'.o')[0]

		disconnectNodes(pmm)
		mc.delete(pmm)

		greatestLength=0.0
		for i in [0,1,2]:
			if abs(self.poleVector[i])>greatestLength and ['x','y','z'][i]!=self.orientAxis:
				self.poleAxis=['x','y','z'][i]
				greatestLength=abs(self.poleVector[i])
				self.bendDirection=-abs(self.poleVector[i])/self.poleVector[i]

		for r in self.originalRotations:
			mc.setAttr(r,self.originalRotations[r])

		preferredAngleWarning=False
		if not mc.objExists(self.joints[1]):
			preferredAngleWarning=True
			mp=midPoint(self.hierarchy[0],self.hierarchy[-1])
			cd=9e999
			dist=0
			for j in self.hierarchy[1:-1]:
				dist=distanceBetween(j,mp)
				if dist<cd:
					cd=dist
					self.joints[1]=j
					self.bendAxis=removeAll(self.orientAxis,['z','y','x'])[0]

		if self.poleAxis=='': self.poleAxis=removeAll([self.orientAxis,self.bendAxis],['x','y','z'])[0]
		if self.bendAxis=='': self.bendAxis=removeAll([self.orientAxis,self.poleAxis],['x','y','z'])[0]
		if self.orientAxis=='': self.orientAxis=removeAll([self.bendAxis,self.poleAxis],['x','y','z'])[0]

		if self.poleAxis=='x': self.poleVector=[-self.bendDirection,0.0,0.0]
		if self.poleAxis=='y': self.poleVector=[0.0,-self.bendDirection,0.0]
		if self.poleAxis=='z': self.poleVector=[0.0,0.0,-self.bendDirection]

		if self.bendAxis=='x': self.upVector=[-self.bendDirection,0.0,0.0]
		if self.bendAxis=='y': self.upVector=[0.0,-self.bendDirection,0.0]
		if self.bendAxis=='z': self.upVector=[0.0,0.0,-self.bendDirection]

		if self.orientAxis=='x': self.aimVector=[self.bendDirection,0.0,0.0]
		if self.orientAxis=='y': self.aimVector=[0.0,self.bendDirection,0.0]
		if self.orientAxis=='z': self.aimVector=[0.0,0.0,self.bendDirection]

		if mc.objExists(self.baseTwist):

			conn=False
			for a in ['.r','.rx','.ry','.rz']:
				if mc.connectionInfo(self.baseTwist+a,id=True):
					conn=True
			if not conn:
				mc.orientConstraint(self.joints[0],self.baseTwist,sk=self.orientAxis)

		# load ik2Bsolver - ikRPSolver does not work well with this setup

		mel.eval('ik2Bsolver')

		self.create()

		if preferredAngleWarning:
			raise Warning('Warning: Joints are co-linear and no preferred angles were set. Results may be unpredictable.')
Beispiel #5
0
	def create(self):

		mc.cycleCheck(e=False)

		if mc.objExists(self.parent):
			self.group=mc.createNode('transform',n=uniqueNames(self.name),p=self.parent)
		else:
			self.group=mc.createNode('transform',n=uniqueNames(self.name))

		self.jointParent=''
		if len(iterable(mc.listRelatives(self.joints[0],p=True)))>0:
			self.jointParent=mc.listRelatives(self.joints[0],p=True)[0]
		else:
			self.jointParent=mc.createNode('transform',n=uniqueNames(self.name+'CtrlJointGroup'))
			mc.parent(self.joints[0],self.jointParent)

		cMuscleObjects=[]

		# create control joints

		self.ctrlJoints=[]
		for j in self.joints:

			cj=mc.createNode('joint',p=j,n=uniqueNames(self.name+'CtrlJoint'))

			if len(self.ctrlJoints)==0:
				mc.parent(cj,self.group)
				if mc.objExists(self.jointParent):
					self.jointParent=mc.rename(ParentSpace(cj,self.jointParent)[0],self.name+'CtrlJoints')
				else:
					self.jointParent=mc.rename(ParentSpace(cj)[0],self.name+'CtrlJoints')
			else:
				mc.parent(cj,self.ctrlJoints[-1])

			mc.setAttr(cj+'.r',*mc.getAttr(j+'.r')[0])
			mc.setAttr(cj+'.jo',*mc.getAttr(j+'.jo')[0])
			self.originalRotations[cj+'.r']=list(mc.getAttr(cj+'.r')[0])

			mc.setAttr(j+'.r',0,0,0)
			mc.setAttr(cj+'.r',0,0,0)

			mc.setAttr(cj+'.s',1,1,1)
			mc.setAttr(cj+'.radius',mc.getAttr(j+'.radius')*1.5)#0)
			mc.setAttr(cj+'.ovc',10)
			mc.connectAttr(j+'.pa',cj+'.pa')

			if self.joints.index(j)<len(self.joints)-1:
				childList=removeAll\
				(
					iterable(mc.listRelatives(self.joints[self.joints.index(j)+1],c=True,ad=True))+[self.joints[self.joints.index(j)+1]],
					iterable(mc.listRelatives(j,c=True,ad=True))+[j]
				)

				chList=childList
				for c in chList:
					if mc.nodeType(c) not in ['transform','joint','cMuscleObject']:
						childList.remove(c)
					if mc.nodeType(c) in ['transform','joint']:
						for a in ['.t','.tx','.ty','.tz','.r','.rx','.ry','.rz']:
							if mc.connectionInfo(c+a,id=True) or mc.getAttr(c+a,l=True) or mc.getAttr(c+'.io'):
								childList.remove(c)
								break

				if j==self.joints[-2]:
					childList.append(self.joints[-1])

				for jc in childList:
					if mc.nodeType(jc)=='transform' or mc.nodeType(jc)=='joint':
						if jc in self.joints[:-1]:
							mc.parentConstraint(cj,jc,mo=True)
						else:
							mc.parentConstraint(cj,jc,sr=('x','y','z'),mo=True)
					elif 'cMuscle' in mc.nodeType(jc):
						cMuscleObjects.append(jc)

			else:
				mc.parentConstraint(cj,j,st=('x','y','z'),mo=True)

			self.ctrlJoints.append(cj)

		mc.hide(self.jointParent)
		mc.setAttr(self.ctrlJoints[1]+'.ssc',False)

		# create ik

		self.ikHandle,self.endEffector=mc.ikHandle(sol='ik2Bsolver',sj=self.ctrlJoints[0],ee=self.ctrlJoints[-1],n=uniqueNames(self.name+'Handle'))
		self.endEffector=mc.rename(self.endEffector,self.name+'Effector')
		mc.setAttr(self.ikHandle+'.snapEnable',False)
		mc.hide(self.ikHandle)
		mc.setAttr(self.ikHandle+'.ikBlend',0)

		for j in self.originalRotations:
			if isIterable(self.originalRotations[j]):
				mc.setAttr(j,*self.originalRotations[j])
			else:
				mc.setAttr(j,self.originalRotations[j])

		# look for twist joints

		if self.twist:
			skipAxis=removeAll(self.orientAxis,['x','y','z'])
			twistJoints=removeAll([self.joints[-2],self.joints[-1]],hierarchyBetween(self.joints[-2],self.joints[-1],type='joint'))
			for i in range(0,len(twistJoints)):
				tj=twistJoints[i]
				oc=mc.orientConstraint(self.ctrlJoints[-1],tj,sk=skipAxis,mo=True)
				if i>0:
					oc=mc.orientConstraint(self.ctrlJoints[-2],tj,sk=skipAxis,mo=True)
					wal=mc.orientConstraint(oc,q=True,wal=True)
					distToBend=distanceBetween(self.ctrlJoints[-2],tj)
					distToEnd=distanceBetween(self.ctrlJoints[-1],tj)
					mc.setAttr(oc+'.'+wal[-1],distToEnd/(distToBend+distToEnd))
					mc.setAttr(oc+'.'+wal[-2],distToBend/(distToBend+distToEnd))

		# make stretchy

		db=mc.createNode('distanceBetween')
		mc.connectAttr(self.ctrlJoints[0]+'.t',db+'.p1')

		pmm1=mc.createNode('pointMatrixMult')
		pmm2=mc.createNode('pointMatrixMult')

		mc.connectAttr(self.ikHandle+'.t',pmm1+'.ip')
		mc.connectAttr(self.ikHandle+'.pm[0]',pmm1+'.im')

		mc.connectAttr(pmm1+'.o',pmm2+'.ip')
		mc.connectAttr(self.ctrlJoints[0]+'.pim[0]',pmm2+'.im')

		mc.connectAttr(pmm2+'.o',db+'.p2')

		mdl=mc.createNode('multDoubleLinear')
		mc.connectAttr(db+'.d',mdl+'.i1')
		mc.setAttr(mdl+'.i2',1.0/mc.getAttr(db+'.d'))
		cn=mc.createNode('clamp')
		for i in range(0,3):
			c=['r','g','b'][i]
			a=['x','y','z'][i]
			mc.connectAttr(mdl+'.o',cn+'.ip'+c)
			mc.setAttr(cn+'.mn'+c,1)
			mc.connectAttr(mdl+'.o',cn+'.mx'+c)
			mc.connectAttr(cn+'.op'+c,self.ctrlJoints[0]+'.s'+a)

		for cmo in cMuscleObjects:
			mdlcm=mc.createNode('multDoubleLinear')
			mc.setAttr(mdlcm+'.i1',mc.getAttr(cmo+'.length'))
			mc.connectAttr(cn+'.op'+['r','g','b'][['x','y','z'].index(self.orientAxis)],mdlcm+'.i2')
			mc.connectAttr(mdlcm+'.o',cmo+'.length')


		# create control objects or set control object pivots

		poleOffset=distanceBetween(self.ctrlJoints[1],self.ctrlJoints[0])*2

		for i in range(0,len(self.controlObjects)-1):
			if mc.objExists(self.controlObjects[i]):
				mc.xform(self.controlObjects[i],ws=True,piv=mc.xform(self.ctrlJoints[-1],q=True,ws=True,rp=True))
			else:
				if 'r' not in self.handleOptions[i] and 'radius' not in self.handleOptions[i]:
					self.handleOptions[i]['r']=distanceBetween(self.ctrlJoints[-1],self.ctrlJoints[0])/4
				if 'name' not in self.handleOptions[i] and 'n' not in self.handleOptions[i]:
					self.handleOptions[i]['n']=self.joints[i]+'_ctrl'
				if 'x' not in self.handleOptions[i] and 'xform' not in self.handleOptions[i]:
					self.handleOptions[i]['xform']=self.joints[i]
				if 'aim' not in self.handleOptions[i] and 'a' not in self.handleOptions[i]:
					self.handleOptions[i]['aim']=self.aimVector
				self.handleOptions[i]['parent']=self.group
				self.handleOptions[-i]['pointTo']=self.joints[i]
				self.handleOptions[i]['aimAt']=self.joints[i]
				self.handles.append(Handle(**self.handleOptions[i]))
				self.controlObjects[i]=(self.handles[-1].transforms[-1])

		if not mc.objExists(self.controlObjects[-1]):
			if 'name' not in self.handleOptions[-1] and 'n' not in self.handleOptions[-1]:
				self.handleOptions[-1]['n']=self.joints[1]+'_aimCtrl'
			if 'x' not in self.handleOptions[-1] and 'xform' not in self.handleOptions[-1]:
				self.handleOptions[-1]['x']=self.ctrlJoints[1]
			if 'aim' not in self.handleOptions[i] and 'a' not in self.handleOptions[i]:
				self.handleOptions[i]['aim']=self.poleVector
			self.handleOptions[-1]['parent']=self.group
			self.handleOptions[-1]['pointTo']=self.joints[1]
			self.handleOptions[-1]['aimAt']=self.joints[1]
			self.handles.append(Handle(**self.handleOptions[-1]))
			self.controlObjects[-1]=(self.handles[-1].transforms[-1])
			mc.move\
			(
				poleOffset*(self.poleVector[0]),
				poleOffset*(self.poleVector[1]),
				poleOffset*(self.poleVector[2]),
				self.controlObjects[-1],
				r=True,os=True,wd=True
			)

		# add and set control attributes

		mc.setAttr(self.controlObjects[-1]+'.v',k=False)
		for attr in ['.sx','.sy','.sz']:
			mc.setAttr(self.controlObjects[-1]+attr,l=True,k=False,cb=False)
			mc.setAttr(self.ikHandle+attr,l=True,k=False,cb=False)
		for attr in ['.rx','.ry','.rz']:
			mc.setAttr(self.controlObjects[-1]+attr,k=False,cb=False)
		for attr in ['.tx','.ty','.tz']:
			mc.setAttr(self.group+attr,l=True,k=False,cb=False)
			mc.setAttr(self.controlObjects[0]+attr,l=True,k=False,cb=False)

		mc.setAttr(self.ikHandle+'.v',k=False,cb=False)

		for attr in ['.tx','.ty','.tz']:
			mc.setAttr(self.controlObjects[1]+attr,l=True,k=False,cb=False)

		if not mc.objExists(self.controlObjects[-2]+'.twist'):
			mc.addAttr(self.controlObjects[-2],at='doubleAngle',ln='twist',k=True)
		if not mc.objExists(self.controlObjects[-2]+'.sway') and self.sway:
			mc.addAttr(self.controlObjects[-2],at='doubleAngle',ln='sway',k=1)
		if not mc.objExists(self.controlObjects[-2]+'.stretch'):
			mc.addAttr(self.controlObjects[-2],at='double',ln='stretch',k=1,dv=self.stretch,min=0)
		if not mc.objExists(self.controlObjects[-2]+'.squash'):
			mc.addAttr(self.controlObjects[-2],at='double',ln='squash',k=1,dv=self.squash,min=0,max=99)
		if not mc.objExists(self.controlObjects[-2]+'.ikSwitch'):
			mc.addAttr(self.controlObjects[-2],at='enum',ln='ikSwitch',en='ik:fk',k=True,dv=1)# if self.switch=='fk' else 0

		#sway control

		if self.sway:

			adl=mc.createNode('addDoubleLinear')
			mc.connectAttr(self.ctrlJoints[1]+'.r'+self.poleAxis,adl+'.i1')
			mc.connectAttr(self.controlObjects[-2]+'.sway',adl+'.i2')
			childList=removeAll\
			(
				iterable(mc.listRelatives(self.joints[2],c=True,ad=True)),
				iterable(mc.listRelatives(self.joints[1],c=True,ad=True))
			)+[self.joints[2],self.joints[1]]
			for c in childList:
				if mc.nodeType(c)=='transform' or mc.nodeType(c)=='joint':
					pc=mc.parentConstraint(c,q=True)
					nc=listNodeConnections(self.ctrlJoints[1],pc,s=True,d=True)
					for conn in nc:
						if conn[0]==self.ctrlJoints[1]+'.rotate':
							mc.disconnectAttr(conn[0],conn[1])
							for a in removeAll(self.poleAxis,['x','y','z']):
								mc.connectAttr(conn[0]+a.upper(),conn[1]+a.upper(),f=True)
							mc.connectAttr(adl+'.o',conn[1]+self.poleAxis.upper(),f=True)

		# ik/fk switch

		for i in range(0,3):

			c=['r','g','b'][i]
			a=['x','y','z'][i]
			adl=mc.createNode('addDoubleLinear')
			mdl1=mc.createNode('multDoubleLinear')
			mc.setAttr(mdl1+'.i2',.01)
			mdl2=mc.createNode('multDoubleLinear')
			mc.setAttr(mdl2+'.i2',.01)
			revNode=mc.createNode('reverse')
			mc.setAttr(adl+'.i1',1)

			mc.connectAttr(	mdl1+'.o',adl+'.i2')
			mc.connectAttr(self.controlObjects[-2]+'.stretch',mdl1+'.i1')

			mc.connectAttr(	mdl2+'.o',revNode+'.ix')
			mc.connectAttr(self.controlObjects[-2]+'.squash',mdl2+'.i1')

			mc.connectAttr(adl+'.o',cn+'.mx'+c,f=True)
			mc.connectAttr(revNode+'.ox',cn+'.mn'+c,f=True)

		if not mc.objExists(self.controlObjects[-2]+'.zenPreviousIKState'):
			if self.switch=='fk':
				mc.addAttr(self.controlObjects[-2],at='long',ln='zenPreviousIKState',k=0,dv=1)
			else:
				mc.addAttr(self.controlObjects[-2],at='long',ln='zenPreviousIKState',k=0,dv=0)
		if not mc.objExists(self.controlObjects[-2]+'.zenPreviousIKParent'):
			if self.switch=='fk':
				mc.addAttr(self.controlObjects[-2],at='long',ln='zenPreviousIKParent',k=0,dv=1)
			else:
				mc.addAttr(self.controlObjects[-2],at='long',ln='zenPreviousIKParent',k=0,dv=0)

		for i in range(0,2):
			for c in mc.listRelatives(self.controlObjects[i],s=True):
				mc.connectAttr(self.controlObjects[-2]+'.ikSwitch',c+'.v')

		mc.connectAttr(self.controlObjects[-2]+'.twist',self.ikHandle+'.twist')

		rev=mc.createNode('reverse')
		mc.connectAttr(self.controlObjects[-2]+'.ikSwitch',rev+'.ix')
		mc.connectAttr(rev+'.ox',self.ikHandle+'.ikBlend')

		for c in mc.listRelatives(self.controlObjects[-1],s=True):
			mc.connectAttr(rev+'.ox',c+'.v')

		# parent spaces

		for i in [0,1,2]:
			if(mc.objExists(self.jointParent)and i in [0,2]):
				ParentSpace(self.controlObjects[i],self.jointParent)
			else:
				ParentSpace(self.controlObjects[i],self.controlObjects[i-1])

		ParentSpace(self.controlObjects[-1],self.controlObjects[-2])
		if mc.objExists(self.jointParent):
			ParentSpace(self.controlObjects[-1],self.jointParent).setParent(self.jointParent)
			ParentSpace(self.controlObjects[-2],self.jointParent).setParent(self.jointParent)
		else:
			ParentSpace(self.controlObjects[-1],self.controlObjects[0])

		if self.switch=='fk':
			ParentSpace(self.controlObjects[2],self.controlObjects[1])

		for co in self.controlObjects[2:]:
			freeze(co,t=True)

		mc.aimConstraint\
		(
			self.ctrlJoints[1],self.controlObjects[-1],
			aim=(self.aimVector[0],self.aimVector[1],self.aimVector[2]),
			wuo=self.ctrlJoints[1],
			wut='objectrotation',
			mo=True
		)

		if mc.objExists(self.jointParent):
			mc.setAttr(self.controlObjects[0]+'.parentTo',l=True,k=False,cb=False)
		mc.setAttr(self.controlObjects[1]+'.parentTo',l=True,k=False,cb=False)

		#constraints

		orientConstraints=['','','']
		for i in [2,1,0]:
			orientConstraints[i]=mc.orientConstraint(self.controlObjects[i],self.ctrlJoints[i],mo=True)[0]
			mc.setAttr(self.controlObjects[i]+'.v',k=False)
			for attr in ['.sx','.sy','.sz']:
				mc.setAttr(self.controlObjects[i]+attr,l=True,k=False,cb=False)
			if i==1:
				if not self.sway:
					mc.setAttr(self.controlObjects[i]+'.r'+self.poleAxis,l=True,k=False,cb=False)
				mc.setAttr(self.controlObjects[i]+'.r'+self.orientAxis,l=True,k=False,cb=False)

		self.poleVectorConstraint=mc.poleVectorConstraint(self.controlObjects[-1],self.ikHandle)[0]

		for oc in orientConstraints[:-1]:
			octl=mc.orientConstraint(oc,q=True,tl=True)
			ocwal=mc.orientConstraint(oc,q=True,wal=True)
			weightAlias=ocwal[octl.index(self.controlObjects[orientConstraints.index(oc)])]
			mc.connectAttr(self.controlObjects[-2]+'.ikSwitch',oc+'.'+weightAlias)

		mc.parent(self.ikHandle,self.controlObjects[2],r=False)

		if self.switch=='ik':
			mc.setAttr(self.controlObjects[-2]+'.ikSwitch',0)

		# link for asset detection

		if 'zenIkFkLimbCtrls' not in mc.listAttr(self.group):
			mc.addAttr(self.group,ln='zenIkFkLimbCtrls',at='message',m=True)
		if 'zenIkFkLimbCtrlJoints' not in mc.listAttr(self.group):
			mc.addAttr(self.group,ln='zenIkFkLimbCtrlJoints',at='message',m=True)
		for co in self.controlObjects:
			if 'zenCtrl' not in mc.listAttr(co):
				mc.addAttr(co,ln='zenCtrl',at='message')
			mc.connectAttr(co+'.zenCtrl',self.group+'.zenIkFkLimbCtrls['+str(firstOpenPlug(self.group+'.zenIkFkLimbCtrls'))+']')
		for cj in self.ctrlJoints:
			if 'zenCtrl' not in mc.listAttr(cj):
				mc.addAttr(cj,ln='zenCtrl',at='message')
			mc.connectAttr(cj+'.zenCtrl',self.group+'.zenIkFkLimbCtrlJoints['+str(firstOpenPlug(self.group+'.zenIkFkLimbCtrlJoints'))+']')

		for bp in self.bindPoses:
			for co in self.controlObjects:
				mc.dagPose(co,a=True,n=bp)

		self[:]=[self.group]+self.controlObjects

		mc.cycleCheck(e=True)

		mc.select(self[-2])
Beispiel #6
0
	def create(self):

		worldMatrixNode=mc.createNode('fourByFourMatrix')
		wm=\
		[
			[1,0,0,0],
			[0,1,0,0],
			[0,0,1,0],
			[0,0,0,1]
		]
		for a in range(0,4):
			for b in range(0,4):
				mc.setAttr( worldMatrixNode+'.in'+str(a)+str(b), wm[a][b] )

		self.worldMatrix=worldMatrixNode+'.o'

		wsMatrices=[]

		cleanup=[]

		lattices=[]
		uvPos=[]
		antipodes=[]

		cpos=mc.createNode('closestPointOnSurface')

		if 'surfaceAttr' not in self.__dict__ or len(self.surfaceAttr)==0 and len(self.edges)>0:
			mc.select(self.edges)
			rebuildNode,surfaceNodeTr=mel.eval('zenLoftBetweenEdgeLoopPathRings(2)')[:2]
			self.surfaceAttr=rebuildNode+'.outputSurface'

			children=mc.listRelatives(surfaceNodeTr,c=True,s=True,ni=True,type='nurbsSurface')
			if isIterable(children) and len(children)>0:
				self.uSpans=mc.getAttr(children[0]+'.spansU')
				self.vSpans=mc.getAttr(children[0]+'.spansV')

			mc.disconnectAttr(self.surfaceAttr,surfaceNodeTr+'.create')
			mc.delete(surfaceNodeTr)


		if self.uSpans<0 or self.vSpans<0:
			tempTr=mc.createNode('transform')
			tempCurve=mc.createNode('nurbsCurve',p=tempTr)
			mc.connectAttr(self.surfaceAttr,tempCurve+'.create')
			self.uSpans=mc.getAttr(tempCurve+'.spansU')
			self.vSpans=mc.getAttr(tempCurve+'.spansV')
			mc.disconnectAttr(self.surfaceAttr,tempCurve+'.create')
			mc.delete(tempTr)

		orderedTrs=[]
		orderedCtrls=[]

		if self.distribute not in ['u','v']: #calculate the axis of distribution
			if len(self.trs)!=0:
				mc.connectAttr(self.surfaceAttr,cpos+'.inputSurface')
				uMin=100
				vMin=100
				uMax=0
				vMax=0
				uPosList=[]
				vPosList=[]

				for i in range(0,self.number):

					orderedTrs.append('')
					orderedCtrls.append('')
					t=self.trs[i]

					if mc.objExists(t): # find the closest point
						if self.hasGeometry:
							center=mc.objectCenter(t)
							mc.setAttr(cpos+'.ip',*center)
							posCenter,uCenter,vCenter=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

						rp=mc.xform(t,ws=True,q=True,rp=True)
						mc.setAttr(cpos+'.ip',*rp)
						posRP,uRP,vRP=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

						# see which is closer - object center or rotate pivot
						if self.hasGeometry:
							distCenter=distanceBetween(posCenter,center)
							distRP=distanceBetween(posRP,rp)

						if self.hasGeometry==False or abs(distCenter)>abs(distRP) :
							uPosList.append(uRP)
							vPosList.append(vRP)
							if uRP<uMin: uMin=uRP
							if uRP>uMax: uMax=uRP
							if vRP<vMin: vMin=vRP
							if vRP>vMax: vMax=vRP
						else:
							uPosList.append(uCenter)
							vPosList.append(vCenter)
							if uCenter<uMin: uMin=uCenter
							if uCenter>uMax: uMax=uCenter
							if vCenter<vMin: vMin=vCenter
							if vCenter>vMax: vMax=vCenter

			cfsi=mc.createNode('curveFromSurfaceIso')

			mc.connectAttr(self.surfaceAttr,cfsi+'.is')
			mc.setAttr(cfsi+'.idr',0)
			mc.setAttr(cfsi+'.iv',.5)
			mc.setAttr(cfsi+'.r',True)
			mc.setAttr(cfsi+'.rv',True)

			if len(self.trs)!=0:
				mc.setAttr(cfsi+'.min',uMin)
				mc.setAttr(cfsi+'.max',uMax)

			ci=mc.createNode('curveInfo')
			mc.connectAttr(cfsi+'.oc',ci+'.ic')
			uLength=mc.getAttr(ci+'.al')

			mc.setAttr(cfsi+'.idr',1)

			if len(self.trs)!=0:
				mc.setAttr(cfsi+'.min',vMin)
				mc.setAttr(cfsi+'.max',vMax)

			vLength=mc.getAttr(ci+'.al')

			mc.delete(cfsi,ci)

			if uLength>vLength:
				self.distribute='u'

				if len(self.trs)!=0:
					searchList=uPosList
					orderedList=uPosList[:]
					orderedList.sort()
			else:
				self.distribute='v'

				if len(self.trs)!=0:
					searchList=vPosList
					orderedList=vPosList[:]
					orderedList.sort()

			reverseTrs=False

			orderIDList=[]
			for n in range(0,self.number):
				s=searchList[n]
				for i in range(0,self.number):
					if s==orderedList[i] and i not in orderIDList:
						orderIDList.append(i)
						orderedTrs[i]=self.trs[n]
						orderedCtrls[i]=self.ctrls[n]
						if n==0 and i>len(self.trs)/2:
							reverseTrs=True
						break

			if reverseTrs:
				orderedTrs.reverse()
				self.trs=orderedTrs
				orderedCtrls.reverse()
				self.ctrls=orderedCtrls
			else:
				self.trs=orderedTrs
				self.ctrls=orderedCtrls

		if self.rebuild: # interactive rebuild, maintains even parameterization over the rivet surface, use with caution

			if self.distribute=='u':
				self.surfaceAttr=mel.eval('zenUniformSurfaceRebuild("'+self.surfaceAttr+'",'+str(self.uSpans*2)+',-1)')+'.outputSurface'
			else:
				self.surfaceAttr=mel.eval('zenUniformSurfaceRebuild("'+self.surfaceAttr+'",-1,'+str(self.vSpans*2)+')')+'.outputSurface'

		if not mc.isConnected(self.surfaceAttr,cpos+'.inputSurface'):
			mc.connectAttr(self.surfaceAttr,cpos+'.inputSurface',f=True)

		if self.taper=='distance' or self.createAimCurve or self.closestPoint=='geometry': # find the closest points ( and antipodes )

			for i in range(0,self.number):
				t=self.trs[i]
				cp=ClosestPoints(self.surfaceAttr,t)
				self.ClosestPoints.append(cp)

				if self.taper=='distance' or self.createAimCurve: # antipodes are used for lattice allignment and curve calculations
					antipodes.append(cp.getAntipodes(1))

		if self.taper!='none' or self.scale!='none': # measures scale with scaling

			cfsiLength=mc.createNode('curveFromSurfaceIso')
			ciLength=mc.createNode('curveInfo')
			lengthMultiplierNode=mc.createNode('multDoubleLinear')

			mc.setAttr(cfsiLength+'.relative',True)
			mc.setAttr(cfsiLength+'.relativeValue',True)

			if self.distribute=='u':
				mc.setAttr(cfsiLength+'.isoparmDirection',0)
			else:
				mc.setAttr(cfsiLength+'.isoparmDirection',1)

			mc.setAttr(cfsiLength+'.minValue',0)
			mc.setAttr(cfsiLength+'.maxValue',1)

			mc.setAttr(cfsiLength+".isoparmValue",.5)

			mc.connectAttr(self.surfaceAttr,cfsiLength+'.inputSurface')

			if mc.objExists(self.spaceTr):

				lengthCurve=mc.createNode('nurbsCurve',p=self.spaceTr)
				lengthCurveTG=mc.createNode('transformGeometry')

				mc.connectAttr(self.spaceTr+'.worldMatrix[0]',lengthCurveTG+'.txf')
				mc.connectAttr(cfsiLength+'.outputCurve',lengthCurveTG+'.ig')
				mc.connectAttr(lengthCurveTG+'.og',lengthCurve+'.create')
				mc.connectAttr(lengthCurve+'.worldSpace',ciLength+'.inputCurve')
				mc.setAttr(lengthCurve+'.intermediateObject',True)

				cleanup.extend([lengthCurveTG,cfsiLength])

			else:

				mc.connectAttr(cfsiLength+'.outputCurve',ciLength+'.inputCurve')

			mc.connectAttr(ciLength+'.al',lengthMultiplierNode+'.i1')
			mc.setAttr(lengthMultiplierNode+'.i2',1.0/float(mc.getAttr(ciLength+'.al')))

			lengthMultiplier=lengthMultiplierNode+'.o'


		uvPos=[]
		closestDistanceToCenter=Decimal('infinity')
		centerMostRivetID=0
		closestDistancesToCenter=[Decimal('infinity'),Decimal('infinity')]
		centerMostRivetIDs=[0,0]

		uvMultipliers=[]
		aimGroups=[]

		for i in range(0,self.number):

			pTrs=mc.listRelatives(self.trs[i],p=True)
			parentTr=''
			if len(iterable(pTrs))>0:
				parentTr=pTrs[0]

			t=self.trs[i]
			c=self.ctrls[i]
			r=mc.createNode('transform',n='Rivet#')

			wsMatrices.append(mc.xform(t,q=True,ws=True,m=True))

			if self.constraint: mc.setAttr(r+'.inheritsTransform',False)

			if not mc.objExists(c):
				c=t
				if not mc.objExists(t):
					c=r

			if not mc.objExists(c+'.zenRivet'):
				mc.addAttr(c,at='message',ln='zenRivet',sn='zriv')

			mc.connectAttr(r+'.message',c+'.zriv',f=True)

			if not mc.objExists(c+'.uPos'):
				mc.addAttr(c,k=True,at='double',ln='uPos',dv=50)
			if not mc.objExists(c+'.vPos'):
				mc.addAttr(c,k=True,at='double',ln='vPos',dv=50)

			if self.closestPoint=='geometry':
				up,vp=self.ClosestPoints[i].uvs[0]
			else:
				if mc.objExists(t):
					if self.hasGeometry:
						center=mc.objectCenter(t)
						mc.setAttr(cpos+'.ip',*center)
						posCenter,uCenter,vCenter=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

					rp=mc.xform(t,ws=True,q=True,rp=True)
					mc.setAttr(cpos+'.ip',*rp)
					posRP,uRP,vRP=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

					if self.hasGeometry:
						distCenter=distanceBetween(posCenter,center)
						distRP=distanceBetween(posRP,rp)

					if self.hasGeometry==False or abs(distCenter)>abs(distRP):
						up=uRP
						vp=vRP
					else:
						up=uCenter
						vp=vCenter

				elif len(distribute)>0:

					if self.distribute=='u':
						up=(i+1)/self.number
						vp=.5
					else:
						up=.5
						vp=(i+1)/self.number

			if up>float(self.uSpans)-.01: up=float(self.uSpans)-.01
			if vp>float(self.vSpans)-.01: vp=float(self.vSpans)-.01
			if up<.01: up=.01
			if vp<.01: vp=.01

			uvPos.append((up,vp))

			if up<.5 and self.distribute=='u' and Decimal(str(abs(.5-up)))<Decimal(str(closestDistancesToCenter[0])):
				closestDistancesToCenter[0]=abs(.5-up)
				centerMostRivetIDs[0]=i

			if up>.5 and self.distribute=='u' and Decimal(str(abs(.5-up)))<Decimal(str(closestDistancesToCenter[1])):
				closestDistancesToCenter[1]=abs(.5-up)
				centerMostRivetIDs[1]=i

			if up<.5 and self.distribute=='v' and Decimal(str(abs(.5-vp)))<Decimal(str(closestDistancesToCenter[0])):
				closestDistancesToCenter[0]=abs(.5-vp)
				centerMostRivetIDs[0]=i

			if up>.5 and self.distribute=='v' and Decimal(str(abs(.5-vp)))<Decimal(str(closestDistancesToCenter[1])):
				closestDistancesToCenter[1]=abs(.5-vp)
				centerMostRivetIDs[1]=i

			mc.setAttr(c+'.uPos',up*100)
			mc.setAttr(c+'.vPos',vp*100)

			posi=mc.createNode('pointOnSurfaceInfo')
			mc.setAttr((posi+".caching"),True)
			#mc.setAttr((posi+".top"),True)

			multiplyU=mc.createNode('multDoubleLinear')
			mc.connectAttr(c+".uPos",multiplyU+".i1")
			mc.setAttr(multiplyU+'.i2',.01)
			multiplyV=mc.createNode('multDoubleLinear')
			mc.connectAttr(c+".vPos",multiplyV+".i1")
			mc.setAttr(multiplyV+'.i2',.01)

			uvMultipliers.append([multiplyU,multiplyV])

			mc.connectAttr(self.surfaceAttr,posi+".inputSurface");
			mc.connectAttr(multiplyU+".o",posi+".parameterU")
			mc.connectAttr(multiplyV+".o",posi+".parameterV")

			dm=mc.createNode('decomposeMatrix')
			mc.setAttr(dm+'.caching',True)
			fbfm=mc.createNode('fourByFourMatrix')
			mc.setAttr(fbfm+'.caching',True)

			mc.connectAttr(posi+'.nnx',fbfm+'.in00')
			mc.connectAttr(posi+'.nny',fbfm+'.in01')
			mc.connectAttr(posi+'.nnz',fbfm+'.in02')
			mc.connectAttr(posi+'.nux',fbfm+'.in10')
			mc.connectAttr(posi+'.nuy',fbfm+'.in11')
			mc.connectAttr(posi+'.nuz',fbfm+'.in12')
			mc.connectAttr(posi+'.nvx',fbfm+'.in20')
			mc.connectAttr(posi+'.nvy',fbfm+'.in21')
			mc.connectAttr(posi+'.nvz',fbfm+'.in22')
			mc.connectAttr(posi+'.px',fbfm+'.in30')
			mc.connectAttr(posi+'.py',fbfm+'.in31')
			mc.connectAttr(posi+'.pz',fbfm+'.in32')

			if self.constraint:# and not self.parent:
				mc.connectAttr(fbfm+'.output',dm+'.inputMatrix')
			else:
				multMatrix=mc.createNode('multMatrix')
				mc.connectAttr(r+'.parentInverseMatrix',multMatrix+'.i[1]')
				mc.connectAttr(fbfm+'.output',multMatrix+'.i[0]')
				mc.connectAttr(multMatrix+'.o',dm+'.inputMatrix')

			mc.connectAttr(dm+'.outputTranslate',r+'.t')
			mc.connectAttr(dm+'.outputRotate',r+'.r')

			if t!=r:

				if self.createAimCurve:
					aimGroup=mc.createNode('transform',n='rivetAimGrp#')
					mc.parent(aimGroup,t,r=True)
					mc.parent(aimGroup,r)
					if self.keepPivot or self.closestPoint=='pivot':
						mc.xform(aimGroup,ws=True,piv=mc.xform(t,q=True,ws=True,rp=True))
					else:
						mc.xform(aimGroup,ws=True,piv=self.ClosestPoints[i][1])
					self.aimGroups.append(aimGroup)

				if self.constraint:

					if self.parent: # parent and constraint == ParentSpace

						self.parentSpaces.append(ParentSpace(t,r))
						pc=self.parentSpaces[i].parentConstraint

						sc=self.parentSpaces[i].scaleConstraint

						skip=['x']
						if\
						(
							(self.distribute=='v' and 'length' in self.scaleDirection) or
							(self.distribute=='u' and 'width' in self.scaleDirection) or
							t in self.skipScaleObjects
						):
							skip.append('y')
						if\
						(
							(self.distribute=='u' and 'length' in self.scaleDirection) or
							(self.distribute=='v' and 'width' in self.scaleDirection) or
							t in self.skipScaleObjects
						):
							skip.append('z')

						mc.scaleConstraint(sc,e=True,sk=skip)

						if t in self.skipRotateObjects:
							mc.parentConstraint(pc,e=True,sr=('x','y','z'))
						if t in self.skipTranslateObjects:
							mc.parentConstraint(pc,e=True,st=('x','y','z'))

					else: #just constraint

						if t in self.skipRotateObjects:
							pc=mc.parentConstraint(r,t,sr=('x','y','z'),mo=True)[0]#
						if t in self.skipTranslateObjects:
							pc=mc.parentConstraint(r,t,st=('x','y','z'),mo=self.mo)[0]
						if t not in self.skipRotateObjects and t not in self.skipTranslateObjects:
							pc=mc.parentConstraint(r,t,mo=self.mo)[0]



					pcTargets=mc.parentConstraint(pc,q=True,tl=True)

					pcIDs=[]

					nsc=listNodeConnections(r,pc,s=False,d=True)

					for n in range(0,len(nsc)):
						if len(nsc[n])==2 and mc.objExists(nsc[n][-1]):
							pcID=getIDs(nsc[n][-1])
							if isinstance(pcID,int):
								pcIDs.append(pcID)

					pcIDs=removeDuplicates(pcIDs)

					for pcID in pcIDs:
						mc.connectAttr(self.worldMatrix,pc+'.tg['+str(pcID)+'].tpm',f=True)
						mc.connectAttr(dm+'.outputTranslate',pc+'.tg['+str(pcID)+'].tt',f=True)
						mc.connectAttr(dm+'.outputRotate',pc+'.tg['+str(pcID)+'].tr',f=True)

					cleanup.append(r)

					if self.parent:

						scTargets=mc.scaleConstraint(sc,q=True,tl=True)

						scIDs=[]

						nsc=listNodeConnections(r,sc,s=False,d=True)

						for n in range(0,len(nsc)):
							if len(nsc[n])==2 and mc.objExists(nsc[n][-1]):
								scIDs.append(getIDs(nsc[n][-1]))

						scIDs=removeDuplicates(scIDs)

						scMD=mc.createNode('multiplyDivide')
						mc.setAttr(scMD+'.i1',1,1,1)
						mc.setAttr(scMD+'.i2',1,1,1)

						for scID in scIDs:

							mc.connectAttr(self.worldMatrix,sc+'.tg['+str(scID)+'].tpm',f=True)
							#mc.connectAttr(scMD+'.o',sc+'.tg['+str(scID)+'].ts',f=True)
							mc.connectAttr(scMD+'.ox',sc+'.tg['+str(scID)+'].tsx',f=True)
							mc.connectAttr(scMD+'.oy',sc+'.tg['+str(scID)+'].tsy',f=True)
							mc.connectAttr(scMD+'.oz',sc+'.tg['+str(scID)+'].tsz',f=True)

						r=self.parentSpaces[i][0]
						#xfm=mc.xform(r,q=True,ws=True,m=True)
						#mc.setAttr(r+'.inheritsTransform',False)
						#mc.xform(r,m=xfm)
						#mc.connectAttr(self.surfaceMatrix,multMatrix+'.i[1]',f=True)#self.parentSpaces[i][0]+'.parentInverseMatrix'

				elif self.createAimCurve:
					mc.parent(t,w=True)
					mc.setAttr(t+'.inheritsTransform',False)
					mc.parent(t,r,r=True)
				else:
					mc.parent(t,r)

				if mc.objExists(parentTr) and (self.parent or self.createAimCurve) and not self.constraint:

					if not (parentTr in iterable(mc.listRelatives(r,p=True))):

						if mc.getAttr(r+'.inheritsTransform')==True:
							mc.parent(r,parentTr,r=True)
						else:
							mc.parent(r,parentTr)

					if mc.getAttr(r+'.inheritsTransform')==False:

						dm=mc.createNode('decomposeMatrix')
						mc.connectAttr(parentTr+'.worldMatrix',dm+'.inputMatrix')
						mc.connectAttr(dm+'.os',t+'.s',f=True)

			if self.taper!='none' or self.scale!='none':

				cfsiU=mc.createNode('curveFromSurfaceIso')

				mc.setAttr(cfsiU+'.relative',True)
				mc.setAttr(cfsiU+'.relativeValue',True)
				mc.setAttr(cfsiU+'.isoparmDirection',0)
				mc.setAttr(cfsiU+'.minValue',0)
				mc.setAttr(cfsiU+'.maxValue',1)

				mc.connectAttr(multiplyV+".o",cfsiU+".isoparmValue")
				mc.connectAttr(self.surfaceAttr,cfsiU+'.inputSurface')

				cfsiV=mc.createNode('curveFromSurfaceIso')

				mc.setAttr(cfsiV+'.relative',True)
				mc.setAttr(cfsiV+'.relativeValue',True)
				mc.setAttr(cfsiV+'.isoparmDirection',1)
				mc.setAttr(cfsiV+'.minValue',0)
				mc.setAttr(cfsiV+'.maxValue',1)

				mc.connectAttr(multiplyV+".o",cfsiV+".isoparmValue")
				mc.connectAttr(self.surfaceAttr,cfsiV+'.inputSurface')

				subtractNode=mc.createNode('addDoubleLinear')
				mc.setAttr(subtractNode+'.i1',-(1/(self.number*2)))
				addNode=mc.createNode('addDoubleLinear')
				mc.setAttr(addNode+'.i1',1/(self.number*2))
				addSubClampNode=mc.createNode('clamp')
				mc.setAttr(addSubClampNode+'.min',0,0,0)
				mc.setAttr(addSubClampNode+'.max',1,1,1)
				mc.connectAttr(subtractNode+'.o',addSubClampNode+'.inputR')
				mc.connectAttr(addNode+'.o',addSubClampNode+'.inputG')

				if self.distribute=='u':
					mc.connectAttr(multiplyU+".o",subtractNode+".i2")
					mc.connectAttr(multiplyU+".o",addNode+".i2")
					mc.connectAttr(addSubClampNode+'.outputR',cfsiU+'.minValue')
					mc.connectAttr(addSubClampNode+'.outputG',cfsiU+'.maxValue')
				else:
					mc.connectAttr(multiplyV+".o",subtractNode+".i2")
					mc.connectAttr(multiplyV+".o",addNode+".i2")
					mc.connectAttr(addSubClampNode+'.outputR',cfsiV+'.minValue')
					mc.connectAttr(addSubClampNode+'.outputG',cfsiV+'.maxValue')

				ciU=mc.createNode('curveInfo')
				mc.connectAttr(cfsiU+'.outputCurve',ciU+'.inputCurve')

				ciV=mc.createNode('curveInfo')
				mc.connectAttr(cfsiV+'.outputCurve',ciV+'.inputCurve')

				mdlU=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciU+'.al',mdlU+'.i1')
				mc.setAttr(mdlU+'.i2',1/float(mc.getAttr(ciU+'.al')))

				mdlV=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciV+'.al',mdlV+'.i1')
				mc.setAttr(mdlV+'.i2',1/float(mc.getAttr(ciV+'.al')))

				if not mc.objExists(c+'.minScaleWidth'): mc.addAttr(c,ln='minScaleWidth',at='double',k=True,min=0,dv=self.minScaleWidth)
				if not mc.objExists(c+'.maxScaleWidth'): mc.addAttr(c,ln='maxScaleWidth',at='double',k=True,min=0,dv=self.maxScaleWidth)
				if not mc.objExists(c+'.minScaleLength'): mc.addAttr(c,ln='minScaleLength',at='double',k=True,min=0,dv=self.minScaleLength)
				if not mc.objExists(c+'.maxScaleLength'): mc.addAttr(c,ln='maxScaleLength',at='double',k=True,min=0,dv=self.maxScaleLength)

				clampNode=mc.createNode('clamp')

				minScaleLengthNode=mc.createNode('multDoubleLinear')
				maxScaleLengthNode=mc.createNode('multDoubleLinear')
				minScaleWidthNode=mc.createNode('multDoubleLinear')
				maxScaleWidthNode=mc.createNode('multDoubleLinear')

				mc.connectAttr(c+'.minScaleLength',minScaleLengthNode+'.i1')
				mc.connectAttr(lengthMultiplier,minScaleLengthNode+'.i2')

				mc.connectAttr(c+'.maxScaleLength',maxScaleLengthNode+'.i1')
				mc.connectAttr(lengthMultiplier,maxScaleLengthNode+'.i2')

				mc.connectAttr(c+'.minScaleWidth',minScaleWidthNode+'.i1')
				mc.connectAttr(lengthMultiplier,minScaleWidthNode+'.i2')

				mc.connectAttr(c+'.maxScaleWidth',maxScaleWidthNode+'.i1')
				mc.connectAttr(lengthMultiplier,maxScaleWidthNode+'.i2')

				if self.distribute=='u':
					mc.connectAttr(minScaleLengthNode+'.o',clampNode+'.minR')
					mc.connectAttr(maxScaleLengthNode+'.o',clampNode+'.maxR')
					mc.connectAttr(minScaleWidthNode+'.o',clampNode+'.minG')
					mc.connectAttr(maxScaleWidthNode+'.o',clampNode+'.maxG')
				else:
					mc.connectAttr(minScaleWidthNode+'.o',clampNode+'.minR')
					mc.connectAttr(maxScaleWidthNode+'.o',clampNode+'.maxR')
					mc.connectAttr(minScaleLengthNode+'.o',clampNode+'.minG')
					mc.connectAttr(maxScaleLengthNode+'.o',clampNode+'.maxG')

				mc.connectAttr(mdlU+'.o',clampNode+'.ipr')
				mc.connectAttr(mdlV+'.o',clampNode+'.ipg')

				if self.scale=='relative' and self.parent:#or len(self.scaleDirection)<2:#

					if\
					(
						(self.distribute=='u' and 'length' in self.scaleDirection) or
						(self.distribute=='v' and 'width' in self.scaleDirection)
					):
						if self.constraint:
							mc.connectAttr(clampNode+'.opr',scMD+'.i1y')
						else:
							mc.connectAttr(clampNode+'.opr',r+'.sy',f=True)
					if\
					(
						(self.distribute=='v' and 'length' in self.scaleDirection) or
						(self.distribute=='u' and 'width' in self.scaleDirection)
					):
						if self.constraint:
							mc.connectAttr(clampNode+'.opg',scMD+'.i1z')
						else:
							mc.connectAttr(clampNode+'.opg',r+'.sz',f=True)


				elif self.taper!='none' and self.parent:

					#self.autoFlexGroups

					mc.setAttr(t+'.sx',lock=True)
					mc.setAttr(t+'.sy',lock=True)
					mc.setAttr(t+'.sz',lock=True)
					mc.setAttr(t+'.tx',lock=True)
					mc.setAttr(t+'.ty',lock=True)
					mc.setAttr(t+'.tz',lock=True)
					mc.setAttr(t+'.rx',lock=True)
					mc.setAttr(t+'.ry',lock=True)
					mc.setAttr(t+'.rz',lock=True)

					aimTr=mc.createNode('transform',p=t)
					mc.xform(aimTr,ws=True,t=antipodes[i])

					#mc.setAttr(db+'.p1',*self.ClosestPoints[i][0])
					#mc.setAttr(db+'.p2',*antipodes[i])
					axisLength=distanceBetween(self.ClosestPoints[i][0],antipodes[i])#mc.getAttr(db+'.d')

					ffd,lattice,latticeBase=mc.lattice(t,divisions=(2,2,2),objectCentered=True,ol=1)
					latticeLowEndPoints=mc.ls(lattice+'.pt[0:1][0:0][0:1]',fl=True)
					latticeHighEndPoints=mc.ls(lattice+'.pt[0:1][1:1][0:1]',fl=True)

					mc.parent(latticeBase,lattice)

					mc.setAttr(lattice+'.sy',axisLength)

					lattices.append([ffd,lattice,latticeBase])

					mc.parent(lattice,t)
					mc.xform(lattice,ws=True,a=True,t=mc.xform(r,q=True,ws=True,a=True,rp=True))
					mc.xform(lattice,os=True,a=True,ro=(0,0,0))
					mc.move(0,axisLength/2,0,lattice,r=True,os=True,wd=True)

					xSum,ySum,zSum=0,0,0
					for p in latticeLowEndPoints:
						px,py,pz=mc.pointPosition(p,w=True)
						xSum+=px
						ySum+=py
						zSum+=pz

					mc.xform(lattice,ws=True,piv=(xSum/len(latticeLowEndPoints),ySum/len(latticeLowEndPoints),zSum/len(latticeLowEndPoints)))
					mc.xform(latticeBase,ws=True,piv=(xSum/len(latticeLowEndPoints),ySum/len(latticeLowEndPoints),zSum/len(latticeLowEndPoints)))

					ac=mc.aimConstraint(aimTr,lattice,aim=(0,1,0),wut='objectrotation',wuo=r,u=(0,0,1),mo=False)
					mc.delete(ac)

					ac=mc.aimConstraint(aimTr,aimGroup,aim=(0,1,0),wut='objectrotation',wuo=r,u=(0,0,1),mo=False)
					mc.delete(ac,aimTr)

					lowEndCluster,lowEndClusterHandle=mc.cluster(latticeLowEndPoints)[:2]
					highEndCluster,highEndClusterHandle=mc.cluster(latticeHighEndPoints)[:2]

					lowEndClusterHandleShape=mc.listRelatives(lowEndClusterHandle,c=True)[0]
					highEndClusterHandleShape=mc.listRelatives(highEndClusterHandle,c=True)[0]

					#mc.parent(highEndClusterHandle,t)

					if mc.isConnected(lowEndClusterHandleShape+'.clusterTransforms[0]',lowEndCluster+'.clusterXforms'):
						mc.disconnectAttr(lowEndClusterHandleShape+'.clusterTransforms[0]',lowEndCluster+'.clusterXforms')
					if mc.isConnected(highEndClusterHandleShape+'.clusterTransforms[0]',highEndCluster+'.clusterXforms'):
						mc.disconnectAttr(highEndClusterHandleShape+'.clusterTransforms[0]',highEndCluster+'.clusterXforms')

					self.autoFlexGroups.append\
					(
						(
							mc.createNode('transform',n='rivetBaseAutoFlex#',p=r),
							mc.createNode('transform',n='rivetEndAutoFlex#',p=aimGroup)
						)
					)

					self.handles.append\
					(
						(
							mc.createNode('transform',n='rivetBaseCtrl#',p=self.autoFlexGroups[i][0]),
							mc.createNode('transform',n='rivetEndCtrl#',p=self.autoFlexGroups[i][1])
						)
					)

					self.handleShapes.append\
					(
						(
							mc.createNode('locator',p=self.handles[i][0]),
							mc.createNode('locator',p=self.handles[i][1])
						)
					)

					mc.setAttr(self.handleShapes[i][0]+'.los',.5,.5,.5)
					mc.setAttr(self.handleShapes[i][1]+'.los',.5,.5,.5)

					mc.xform(self.autoFlexGroups[i][0],ws=True,a=True,t=mc.xform(t,q=True,ws=True,rp=True))
					mc.xform(self.autoFlexGroups[i][0],ws=True,a=True,piv=mc.xform(t,q=True,ws=True,rp=True))

					for bp in self.bindPoses: mc.dagPose((self.handles[i][0],self.handles[i][1]),a=True,n=bp)

					mc.xform(self.autoFlexGroups[i][1],ws=True,t=antipodes[i])

					mc.hide(lattice)

					mc.connectAttr(self.handles[i][0]+'.worldInverseMatrix[0]',lowEndCluster+'.bindPreMatrix',f=True)
					mc.disconnectAttr(self.handles[i][0]+'.worldInverseMatrix[0]',lowEndCluster+'.bindPreMatrix')

					mc.connectAttr(self.handles[i][0]+'.worldMatrix[0]',lowEndCluster+'.matrix',f=True)

					mc.connectAttr(self.handles[i][1]+'.worldInverseMatrix[0]',highEndCluster+'.bindPreMatrix',f=True)
					mc.disconnectAttr(self.handles[i][1]+'.worldInverseMatrix[0]',highEndCluster+'.bindPreMatrix')

					mc.connectAttr(self.handles[i][1]+'.worldMatrix[0]',highEndCluster+'.matrix',f=True)

					aimGroups.append(aimGroup)

					if self.distribute=='u':
						mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][0]+'.sy')
					else:
						mc.connectAttr(clampNode+'.opg',self.autoFlexGroups[i][0]+'.sz')

					mc.delete([lowEndClusterHandle,highEndClusterHandle])

				self.rivets.append(r)

		if self.createAimCurve and self.parent:

			pmm=mc.createNode('pointMatrixMult')
			arcPoints=[]
			ids=[0,centerMostRivetIDs[0],centerMostRivetIDs[1],-1]

			for id in ids:

				measureTr=mc.createNode('transform')
				aimTr=mc.createNode('transform',p=self.trs[id])
				mc.parent(measureTr,self.trs[id])

				mc.xform(aimTr,ws=True,t=antipodes[id])
				mc.xform(measureTr,ws=True,t=mc.xform(self.rivets[id],q=True,ws=True,a=True,rp=True))
				#mc.xform(measureTr,os=True,a=True,ro=(0,0,0),s=(1,1,1))

				ac=mc.aimConstraint(aimTr,measureTr,aim=(0,1,0),wut='objectrotation',wuo=self.rivets[id],u=(0,0,1),mo=False)
				mc.delete(ac,aimTr)

				mc.connectAttr(measureTr+'.worldInverseMatrix',pmm+'.inMatrix',f=True)

				maxYID=-1
				maxY=0.0
				yVal=0.0

				for i in range(0,self.number):

					mc.setAttr(pmm+'.ip',*antipodes[i])
					yVal=mc.getAttr(pmm+'.oy')
					if yVal>maxY:
						maxY=yVal
						maxYID=i

				mc.setAttr(pmm+'.ip',*antipodes[maxYID])

				oy=mc.getAttr(pmm+'.oy')

				mc.setAttr(pmm+'.ip',*antipodes[id])

				ox=mc.getAttr(pmm+'.ox')
				oz=mc.getAttr(pmm+'.oz')

				mc.connectAttr(measureTr+'.worldMatrix',pmm+'.inMatrix',f=True)
				mc.setAttr(pmm+'.ip',ox,oy,oz)

				ap=mc.getAttr(pmm+'.o')[0]

				arcPoints.append(ap)

				mc.disconnectAttr(measureTr+'.worldMatrix',pmm+'.inMatrix')

				mc.delete(measureTr)

			mc.delete(pmm)

			arcCtrlArg=arcPoints
			arcCtrlKeys={'arcWeight':self.arcWeight,'p':self.parents,'sp':self.softParents}

			for k in arcCtrlKeys:
				if type(arcCtrlKeys[k]).__name__=='NoneType':
					del(arcCtrlKeys[k])

			self.ArcCtrl=ArcCtrl(*arcCtrlArg,**arcCtrlKeys)

			mc.addAttr(self.ArcCtrl[0],at='bool',ln='showHandles',k=True,dv=False)
			mc.setAttr(self.ArcCtrl[0]+'.showHandles',k=False,cb=True)
			mc.setAttr(self.ArcCtrl[0]+'.v',k=False,cb=True)
			mc.setAttr(self.ArcCtrl[1]+'.v',k=False,cb=True)

			for h in self.handles:
				mc.connectAttr(self.ArcCtrl[0]+'.showHandles',h[0]+'.v')
				mc.connectAttr(self.ArcCtrl[0]+'.showHandles',h[1]+'.v')

			for bp in self.bindPoses: mc.dagPose(self.ArcCtrl,a=True,n=bp)

			cpoc=mc.createNode('closestPointOnCurve')
			mc.connectAttr(self.ArcCtrl.outputCurve,cpoc+'.inCurve')

			for i in range(0,self.number):

				aimTr=mc.createNode('transform')
				poci=mc.createNode('pointOnCurveInfo')
				dm=mc.createNode('decomposeMatrix')
				fbfm=mc.createNode('fourByFourMatrix')

				mc.connectAttr(poci+'.nnx',fbfm+'.in00')
				mc.connectAttr(poci+'.nny',fbfm+'.in01')
				mc.connectAttr(poci+'.nnz',fbfm+'.in02')
				mc.connectAttr(poci+'.ntx',fbfm+'.in10')
				mc.connectAttr(poci+'.nty',fbfm+'.in11')
				mc.connectAttr(poci+'.ntz',fbfm+'.in12')

				mc.connectAttr(self.ArcCtrl.outputNormal+'X',fbfm+'.in20')
				mc.connectAttr(self.ArcCtrl.outputNormal+'Y',fbfm+'.in21')
				mc.connectAttr(self.ArcCtrl.outputNormal+'Z',fbfm+'.in22')

				mc.connectAttr(poci+'.px',fbfm+'.in30')
				mc.connectAttr(poci+'.py',fbfm+'.in31')
				mc.connectAttr(poci+'.pz',fbfm+'.in32')

				mc.connectAttr(fbfm+'.output',dm+'.inputMatrix')
				mc.connectAttr(dm+'.outputTranslate',aimTr+'.t')
				mc.connectAttr(dm+'.outputRotate',aimTr+'.r')

				mc.setAttr(cpoc+'.ip',*antipodes[i])
				cpu=mc.getAttr(cpoc+'.u')
				mc.setAttr(poci+'.parameter',cpu)

				mc.connectAttr(self.ArcCtrl.outputCurve,poci+'.inputCurve')

				ac=mc.aimConstraint(aimTr,self.aimGroups[i],aim=(0,1,0),wut='objectrotation',wuo=aimTr,u=(0,0,1),mo=not(self.realign))[0]

				disconnectNodes(aimTr,ac)

				mc.connectAttr(fbfm+'.output',ac+'.worldUpMatrix',f=True)
				mc.connectAttr(dm+'.ot',ac+'.target[0].targetTranslate',f=True)

				mc.delete(aimTr)

				sc=mc.createNode('subCurve')

				mc.setAttr(sc+'.relative',True)
				mc.setAttr(sc+'.minValue',0)
				mc.setAttr(sc+'.maxValue',1)

				mc.connectAttr(self.ArcCtrl.outputCurve,sc+'.ic')

				if self.distribute=='u':
					uMultAttr=uvMultipliers[i][0]+".o"
				else:
					uMultAttr=uvMultipliers[i][1]+".o"

				#adjust for offset

				multOffsetCalc=mc.createNode('multDoubleLinear')
				mc.setAttr(multOffsetCalc+'.i1',1/mc.getAttr(uMultAttr))
				mc.connectAttr(uMultAttr,multOffsetCalc+'.i2')

				multOffset=mc.createNode('multDoubleLinear')
				mc.setAttr(multOffset+'.i1',cpu)
				mc.connectAttr(multOffsetCalc+'.o',multOffset+'.i2')

				mc.connectAttr(multOffset+'.o',poci+'.parameter',f=True)

				subtractNode=mc.createNode('addDoubleLinear')
				mc.setAttr(subtractNode+'.i1',-(1.0/(self.number*2)))
				addNode=mc.createNode('addDoubleLinear')
				mc.setAttr(addNode+'.i1',1.0/(self.number*2))
				addSubClampNode=mc.createNode('clamp')
				mc.setAttr(addSubClampNode+'.min',0,0,0)
				mc.setAttr(addSubClampNode+'.max',1,1,1)
				mc.connectAttr(subtractNode+'.o',addSubClampNode+'.inputR')
				mc.connectAttr(addNode+'.o',addSubClampNode+'.inputG')

				mc.connectAttr(multOffset+".o",subtractNode+".i2")
				mc.connectAttr(multOffset+".o",addNode+".i2")
				mc.connectAttr(addSubClampNode+'.outputR',sc+'.minValue')
				mc.connectAttr(addSubClampNode+'.outputG',sc+'.maxValue')

				ciU=mc.createNode('curveInfo')
				mc.connectAttr(sc+'.outputCurve',ciU+'.inputCurve')

				mdlU=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciU+'.al',mdlU+'.i1')
				mc.setAttr(mdlU+'.i2',1/float(mc.getAttr(ciU+'.al')))

				clampNode=mc.createNode('clamp')

				if not mc.objExists(c+'.minScaleEnd'): mc.addAttr(self.ctrls[i],ln='minScaleEnd',at='double',k=True,min=0,max=1,dv=0)
				if not mc.objExists(c+'.maxScaleEnd'): mc.addAttr(self.ctrls[i],ln='maxScaleEnd',at='double',k=True,min=0,dv=1)

				mc.connectAttr(self.ctrls[i]+'.minScaleEnd',clampNode+'.minR')
				mc.connectAttr(self.ctrls[i]+'.maxScaleEnd',clampNode+'.maxR')

				mc.connectAttr(mdlU+'.o',clampNode+'.ipr')

				if self.distribute=='u':
					mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][1]+'.sz')
				else:
					mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][1]+'.sy')

			mc.delete(cpoc)

		if self.parent:
			self[:]=self.rivets
		else:
			self[:]=self.trs
		#if self.mo:
		#	#for i in len(self.trs):
		#		#try: mc.xform(t,q=True,ws=True,m=wsMatrices[i]))
		#		#except: pass

		cleanup.append(cpos)

		for c in cleanup:
			if mc.objExists(c):
				disconnectNodes(c)
				mc.delete(c)

		if self.snapToSurface:
			if self.createAimCurve or self.taper:
				for i in range(0,self.number):
					mc.xform(self.handles[i][0],ws=True,t=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
					mc.xform(self.trs[i],ws=True,rp=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
			else:
				for i in range(0,self.number):
					mc.xform(self.trs[i],ws=True,t=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
					mc.xform(self.trs[i],ws=True,ro=mc.xform(self.rivets[i],q=True,ws=True,ro=True))