Beispiel #1
0
        # Add a split
        training_pipeline.add_split(
            CategoricalDomainSplit(categorical_column="name",
                                   split_map={
                                       'train': ["arnold", "nicholas"],
                                       'eval': ["lülük"]
                                   }))

        # Add a preprocessing unit
        training_pipeline.add_preprocesser(
            StandardPreprocesser(features=["name", "age"],
                                 labels=['gpa'],
                                 overwrite={
                                     'gpa': {
                                         'transform': [{
                                             'method': 'no_transform',
                                             'parameters': {}
                                         }]
                                     }
                                 }))

        # Add a trainer
        training_pipeline.add_trainer(
            FeedForwardTrainer(batch_size=1,
                               loss='binary_crossentropy',
                               last_activation='sigmoid',
                               output_units=1,
                               metrics=['accuracy'],
                               epochs=i))
Beispiel #2
0
training_pipeline = TrainingPipeline(name='GCP Orchestrated')

# Add a datasource. This will automatically track and version it.
ds = CSVDatasource(name='Pima Indians Diabetes',
                   path='gs://zenml_quickstart/diabetes.csv')
training_pipeline.add_datasource(ds)

# Add a split
training_pipeline.add_split(RandomSplit(
    split_map={'train': 0.7, 'eval': 0.3}))

# Add a preprocessing unit
training_pipeline.add_preprocesser(
    StandardPreprocesser(
        features=['times_pregnant', 'pgc', 'dbp', 'tst', 'insulin', 'bmi',
                  'pedigree', 'age'],
        labels=['has_diabetes'],
        overwrite={'has_diabetes': {
            'transform': [{'method': 'no_transform', 'parameters': {}}]}}
    ))

# Add a trainer
training_pipeline.add_trainer(FeedForwardTrainer(
    loss='binary_crossentropy',
    last_activation='sigmoid',
    output_units=1,
    metrics=['accuracy'],
    epochs=20))

# Add an evaluator
training_pipeline.add_evaluator(
    TFMAEvaluator(slices=[['has_diabetes']],
Beispiel #3
0
from examples.gan.preprocessing import GANPreprocessor

repo: Repository = Repository().get_instance()

gan_pipeline = TrainingPipeline(name="whynotletitfly", enable_cache=False)

try:
    ds = ImageDatasource(
        name="gan_images",
        base_path="/Users/nicholasjunge/workspaces/maiot/ce_project/images_mini"
    )
except:
    ds = repo.get_datasource_by_name('gan_images')

gan_pipeline.add_datasource(ds)

gan_pipeline.add_split(
    CategoricalDomainSplit(categorical_column="label",
                           split_map={
                               "train": [0],
                               "eval": [1]
                           }))

gan_pipeline.add_preprocesser(GANPreprocessor())

# gan_pipeline.add_preprocesser(transform_step)

gan_pipeline.add_trainer(CycleGANTrainer(epochs=5))

gan_pipeline.run()