import cv2
import matplotlib.pyplot as plt
from lbp import LBP
from TAS import tas
from sklearn.decomposition import PCA

positives = glob('positives/*.jpg')  # Authentic images
negatives = glob('negatives/*.jpg')  #spliced images

Features = []  #Final Feature matrix
for im in (positives + negatives):
    img = cv2.imread(im)  # read image one by one

    features = []  # features for current image
    features = list(mahotas.features.haralick(img).mean(0))  #haralick
    features += list(Zernike(img))  #zernike
    features += (list(sift(img)))  #sift
    Features.append(features)

#Apply KPCA for feature reduction
# will select best 440 features out of one image
kpca = KernelPCA(n_components=440, kernel='rbf')
Features = kpca.fit_transform(Features)

labels = [1] * len(positives) + [0] * len(negatives)  #Labels

#creating SVM Classifier
learner = milk.defaultclassifier()
#model = learner.train(Features, labels)

start = timer()
Beispiel #2
0
    def __init__(self):
        """The Simulator object simulates the camera, mirror, and dynamic aberrations
        of the system. CIAO can be run in simulation mode by instantiating a simulator
        object, then a sensor object using the simulator as its camera, and then a
        loop object using that sensor and the simulator in place of the mirror."""

        self.frame_timer = FrameTimer('simulator')

        # We need to define a meshes on which to build the simulated spots images
        # and the simulated wavefront:
        self.sy = ccfg.image_height_px
        self.sx = ccfg.image_width_px
        self.wavefront = np.zeros((self.sy, self.sx))

        # Some parameters for the spots image:
        self.dc = 100
        self.spots_range = 2000
        self.spots = np.ones((self.sy, self.sx)) * self.dc
        self.spots = self.noise(self.spots)
        self.pixel_size_m = ccfg.pixel_size_m

        # compute single spot
        self.lenslet_pitch_m = ccfg.lenslet_pitch_m
        self.f = ccfg.lenslet_focal_length_m
        self.L = ccfg.wavelength_m
        fwhm_px = (1.22 * self.L * self.f /
                   self.lenslet_pitch_m) / self.pixel_size_m

        xvec = np.arange(self.sx)
        yvec = np.arange(self.sy)
        xvec = xvec - xvec.mean()
        yvec = yvec - yvec.mean()
        XX, YY = np.meshgrid(xvec, yvec)
        d = np.sqrt(XX**2 + YY**2)

        self.beam_diameter_m = ccfg.beam_diameter_m
        self.beam_radius_m = self.beam_diameter_m / 2.0

        self.disc_diameter = 170
        #self.disc_diameter = ccfg.beam_diameter_m/self.pixel_size_m # was just set to 110

        self.disc = np.zeros((self.sy, self.sx))
        self.disc[np.where(d <= self.disc_diameter)] = 1.0

        self.X = np.arange(self.sx, dtype=np.float) * self.pixel_size_m
        self.Y = np.arange(self.sy, dtype=np.float) * self.pixel_size_m
        self.X = self.X - self.X.mean()
        self.Y = self.Y - self.Y.mean()

        self.XX, self.YY = np.meshgrid(self.X, self.Y)

        self.RR = np.sqrt(self.XX**2 + self.YY**2)
        self.mask = np.zeros(self.RR.shape)
        self.mask[np.where(self.RR <= self.beam_radius_m)] = 1.0

        use_partially_illuminated_lenslets = True
        if use_partially_illuminated_lenslets:
            d_lenslets = int(
                np.ceil(self.beam_diameter_m / self.lenslet_pitch_m))
        else:
            d_lenslets = int(
                np.floor(self.beam_diameter_m / self.lenslet_pitch_m))

        rad = float(d_lenslets) / 2.0

        xx, yy = np.meshgrid(np.arange(d_lenslets), np.arange(d_lenslets))

        xx = xx - float(d_lenslets - 1) / 2.0
        yy = yy - float(d_lenslets - 1) / 2.0

        d = np.sqrt(xx**2 + yy**2)

        self.lenslet_mask = np.zeros(xx.shape, dtype=np.uint8)
        self.lenslet_mask[np.where(d <= rad)] = 1
        self.n_lenslets = int(np.sum(self.lenslet_mask))

        self.x_lenslet_coords = xx * self.lenslet_pitch_m / self.pixel_size_m + self.sx / 2.0
        self.y_lenslet_coords = yy * self.lenslet_pitch_m / self.pixel_size_m + self.sy / 2.0
        in_pupil = np.where(self.lenslet_mask)
        self.x_lenslet_coords = self.x_lenslet_coords[in_pupil]
        self.y_lenslet_coords = self.y_lenslet_coords[in_pupil]

        self.lenslet_boxes = SearchBoxes(self.x_lenslet_coords,
                                         self.y_lenslet_coords,
                                         ccfg.search_box_half_width)

        #plt.plot(self.x_lenslet_coords,self.y_lenslet_coords,'ks')
        #plt.show()

        self.mirror_mask = np.loadtxt(ccfg.mirror_mask_filename)
        self.n_actuators = int(np.sum(self.mirror_mask))

        self.command = np.zeros(self.n_actuators)

        # virtual actuator spacing in magnified or demagnified
        # plane of camera
        actuator_spacing = ccfg.beam_diameter_m / float(
            self.mirror_mask.shape[0])
        ay, ax = np.where(self.mirror_mask)
        ay = ay * actuator_spacing
        ax = ax * actuator_spacing
        ay = ay - ay.mean()
        ax = ax - ax.mean()

        self.flat = np.loadtxt(ccfg.mirror_flat_filename)
        self.flat0 = np.loadtxt(ccfg.mirror_flat_filename)

        self.n_zernike_terms = ccfg.n_zernike_terms
        #actuator_sigma = actuator_spacing*0.75
        actuator_sigma = actuator_spacing * 1.5

        self.exposure = 10000  # microseconds

        key = '%d' % hash((tuple(ax), tuple(ay), actuator_sigma, tuple(
            self.X), tuple(self.Y), self.n_zernike_terms))
        key = key.replace('-', 'm')

        try:
            os.mkdir(ccfg.simulator_cache_directory)
        except OSError as e:
            pass

        cfn = os.path.join(ccfg.simulator_cache_directory,
                           '%s_actuator_basis.npy' % key)

        try:
            self.actuator_basis = np.load(cfn)
            print 'Loading cached actuator basis set...'
        except Exception as e:
            actuator_basis = []
            print 'Building actuator basis set...'
            for x, y in zip(ax, ay):
                xx = self.XX - x
                yy = self.YY - y
                surf = np.exp((-(xx**2 + yy**2) / (2 * actuator_sigma**2)))
                surf = (surf - surf.min()) / (surf.max() - surf.min())
                actuator_basis.append(surf.ravel())
                plt.clf()
                plt.imshow(surf)
                plt.title('generating actuator basis\n%0.2e,%0.2e' % (x, y))
                plt.pause(.1)

            self.actuator_basis = np.array(actuator_basis)
            np.save(cfn, self.actuator_basis)

        zfn = os.path.join(ccfg.simulator_cache_directory,
                           '%s_zernike_basis.npy' % key)
        self.zernike = Zernike()
        try:
            self.zernike_basis = np.load(zfn)
            print 'Loading cached zernike basis set...'
        except Exception as e:
            zernike_basis = []
            print 'Building zernike basis set...'
            #zernike = Zernike()
            for z in range(self.n_zernike_terms):
                surf = self.zernike.get_j_surface(z, self.XX, self.YY)
                zernike_basis.append(surf.ravel())

            self.zernike_basis = np.array(zernike_basis)
            np.save(zfn, self.zernike_basis)

        #self.new_error_sigma = np.ones(self.n_zernike_terms)*100.0

        self.zernike_orders = np.zeros(self.n_zernike_terms)
        for j in range(self.n_zernike_terms):
            self.zernike_orders[j] = self.zernike.j2nm(j)[0]

        self.baseline_error_sigma = 1.0 / (1.0 + self.zernike_orders) * 10.0
        self.baseline_error_sigma[3:6] = 150.0

        self.new_error_sigma = self.zernike_orders / 10.0 / 100.0

        # don't generate any piston, tip, or tilt:
        self.baseline_error_sigma[:3] = 0.0
        self.new_error_sigma[:3] = 0.0

        self.error = self.get_error(self.baseline_error_sigma)

        self.paused = False