class ZcmTransceiver(object): def __init__(self): self.transceiver = ZCM('ipc') if not self.transceiver.good(): print("Unable to initialize ZeroCM") exit(-1) def __call__(self, left: bool = True, forward: bool = True, right: bool = True): msg_traffic_light_signal = MsgTrafficLightSignal() msg_traffic_light_signal.timestamp = int(time.time()) msg_traffic_light_signal.turn_signal = bytes( [int(left), int(forward), int(right)]) self.transceiver.publish("msgTrafficLightSignal", msg_traffic_light_signal)
os.path.realpath(__file__)) + '/../../build/examples/examples/' sys.path.insert(0, blddir + "types/") import time success = "Failure" def handler(channel, data): global success if data.decode('utf-8') == "test": success = "Success" # make a new zcm object and launch the handle thread zcm = ZCM("") if not zcm.good(): print("Unable to initialize zcm") exit() msg = "test".encode('utf-8') # set up a subscription on channel "TEST" subs = zcm.subscribe_raw("TEST", handler) # publish a message zcm.publish_raw("TEST", msg) # wait a second time.sleep(1) # publish another
class QuadrotorEnvironment(Env): """ The QuadrotorEnvironment is a Gym environment that simulates a quadrotor. The simulation has support for * action and observation delays with jitter * observation noise, and * state clipping. The environment is highly customizable including * the (randomized) initial state of the quadrotor * the state to observation transformation, which can include a history of past observations * the action to propeller speed mapping including direct and differential drive, absolute speed clipping and propeller acceleration clipping. * the reward function Its design is modular. E.g. you can use the action to propeller speed mapping or the state to observation transformation when running the learned policies on real hardware without taking the environment apart. """ __slots__ = "max_time", "enable_rendering", "simulation_model", "delayed_model", "noised_state", \ "state_to_obersvation", "observation_history", "reward_base", "action_to_propeller_speed", "attitude_pd", \ "initial_state_parameters", "zcm", "reward_fn", "action_space", "observation_space" def __str__(self): return "Quadrotor Environment" def __init__(self, reward_function_parameters: Dict = dict(), quadrotor_model_parameters: Dict = dict(), delay_parameters: Dict = dict(), observation_mapping_parameters: Dict = dict(), noise_parameters: Dict = dict(), observation_history_parameters: Dict = dict(), state_clipping_parameters: Dict = dict(), observe_prop_rate: bool = False, reward_base: str = 'current_state', propeller_speed_mapping_parameters: Dict = dict(), pd_support_parameters: Union[None, Dict] = None, initial_state_parameters: Dict = dict(box_side_length=2, velocity=1, angular_velocity=1), max_time: float = 10, controller_period: float = 0.01, enable_rendering: bool = False, quadrotor_model_parameters_for_preprocessing=None): """ Constructs a new QuadrotorEnvironment with the given parameters. :param reward_function_parameters: The parameters to be passed to the reward function object. See the documentation for the RewardFunction class for details. :param delay_parameters: The parameters to be passed to the model delay wrapper. Defaults to no delays or jitters. See the documentation for the ModelDelayWrapper class for details. :param observation_mapping_parameters: The parameters to be passed to the state to observation mapping object. Defaults to observe position, rotation, velocity and angular velocity with some balanced scaling factors. The rotation is observed as a (flattened) rotation matrix by default. See the documentation for the ToObservationMap class for details. :param noise_parameters: The parameters to be passed to the state noiser object. It applies noise to the system state before it is observed. By default there is no noise. See the documentation for the NoisedStateMap for details. :param observation_history_parameters: Parameters to be passed to the ObservationHistory class. It provides a view on past state observations and actions. By default just the current state is observed and no past actions. See the ObservationHistory documentation for details. :param state_clipping_parameters: Parameters to be passed to the StateClippingWrapper class. During runtime it constraints the state within defined bounds. See the StateClippingWrapper documentation for details. :param observe_prop_rate: Flag that enables observing the current propeller rate TODO: this one should go away :param reward_base: The reward is calculated based on a system state. What system state (observed state, actual state, state with or without the observed noise etc.) is used to compute the reward is determined by this parameter. Can beone of 'current_state', 'next_state', 'observed_state', 'observed_state_with_noise'. :param propeller_speed_mapping_parameters: The parameters passed to the PropellerSpeedMapping class. By default, the propeller speed is controlled directly, clipped to up to three times the hovering speed without any constraints on the propeller acceleration. :param pd_support_parameters: Gains for an attitude proportinal, differential (PD) controller whose output is added to all actions. If None, there is no PD controller. See the AttitudePDController for details on the parameters. :param initial_state_parameters: Controls the distribution from which the initial state is drawn upon reset. Must be a dict with the members * box_side_length: for the size of the box around the origin in which the quadrotor will be placed * velocity: for the maximum initial velocity in x, y and z direction. * angular_velocity: for the maximum angular velocity around all three rotation axes. :param max_time: The maximum time after which an episode in this environment is done. :param controller_period: The duration (in seconds simulated time) between two calls to the policy. :param enable_rendering: A flag controlling if the environment should be rendered or not. :param quadrotor_model_parameters_for_preprocessing: Some of the preprocessing steps such as the observation computation and the PropellerSpeedMapping use some parameters of the simulation such as the hovering thrust. If we want to base those preprocessing steps on different simulation parameters than the actual simulation, this parameter can be set. If None the original simulation parameters are being used. """ assert reward_base in [ 'observed_state', 'observed_state_with_noise', 'current_state', 'next_state' ] if quadrotor_model_parameters_for_preprocessing is None: quadrotor_model_parameters_for_preprocessing = quadrotor_model_parameters quadrotor_model_for_preprocessing = QuadrotorModel( **quadrotor_model_parameters_for_preprocessing) self.max_time = max_time self.enable_rendering = enable_rendering self.simulation_model = QuadrotorModel(**quadrotor_model_parameters) self.delayed_model = ModelDelayWrapper( StateClippingWrapper(self.simulation_model, **state_clipping_parameters), controller_period=controller_period, **delay_parameters) self.noised_state = NoisedStateMap(**noise_parameters) if observe_prop_rate: self.state_to_observation = ToObservationMap( propeller_speed_scale=0.1 / quadrotor_model_for_preprocessing.hovering_thrust, **observation_mapping_parameters) else: self.state_to_observation = ToObservationMap( **observation_mapping_parameters) self.observation_history = ObservationHistory( **observation_history_parameters) self.reward_base = reward_base self.action_to_propeller_speed = PropellerSpeedMapping( quadrotor_model_for_preprocessing.hovering_thrust, **propeller_speed_mapping_parameters) if pd_support_parameters is not None: self.attitude_pd = AttitudePDController( quadrotor_model_for_preprocessing, **pd_support_parameters) else: self.attitude_pd = None self.initial_state_parameters = initial_state_parameters self.zcm = None self.reward_fn = RewardFunction(**reward_function_parameters) self.action_space = Box(-1, 1, (4, ), dtype=np.float32) self.observation_space = Box(-np.infty, np.infty, self.reset().shape, dtype=np.float32) def step(self, action): """ Computes the next observation, reward, done flag and info as the Environment interface of Gym requires. :param action: The action to be transformed to propeller speeds. :return: Tuple consisting of observation, reward, done, {} """ # Compute rotor speeds propeller_speeds, relative_propeller_speed, relative_propeller_acceleration = self.action_to_propeller_speed( action, self.observation_history.dt_history[-1] ) # This is a hacky way to access the most recent dt if self.attitude_pd is not None: current_state = self.delayed_model.compute_current_state() propeller_speeds += self.attitude_pd(current_state) propeller_speeds = np.clip( propeller_speeds, 0, self.action_to_propeller_speed.hovering_speed * 3) if self.reward_base == 'current_state': reward = self.reward_fn(self.delayed_model.compute_current_state(), relative_propeller_speed, relative_propeller_acceleration) # Compute next state observed_state, dt, observation_age = self.delayed_model.step( propeller_speeds) if self.reward_base == 'observed_state': reward = self.reward_fn(observed_state, relative_propeller_speed, relative_propeller_acceleration) # Compute Observation observed_state_with_noise = self.noised_state(observed_state) if self.reward_base == 'observed_state_with_noise': reward = self.reward_fn(observed_state_with_noise, relative_propeller_speed, relative_propeller_acceleration) observation = self.observation_history.get_observation_with_history( self.state_to_observation(observed_state_with_noise, dt, observation_age), relative_propeller_speed, dt) if self.reward_base == 'next_state': reward = self.reward_fn(self.delayed_model.compute_current_state(), relative_propeller_speed, relative_propeller_acceleration) if self.enable_rendering: self.render(reward, self.delayed_model.compute_current_state(), observed_state_with_noise, propeller_speeds) return observation, reward, self.delayed_model.time >= self.max_time, {} def random_state(self): """ Computes a random state based on the initial state parameters. The initial propeller speed is always the hovering speed. :return: A new system state. """ radius = self.initial_state_parameters['box_side_length'] velocity = self.initial_state_parameters['velocity'] angular_velocity = self.initial_state_parameters['angular_velocity'] return SysState( np.random.uniform(-radius, radius, 3), np.random.uniform(-velocity, velocity, 3), sample_random_rotation(), np.random.uniform(-angular_velocity, angular_velocity, 3), np.ones(4) * self.simulation_model.hovering_thrust) def reset(self, initial_state: Union[SysState, None] = None, initial_propeller_speed: Union[np.ndarray, None] = None): """ Resets the environment to either a random initial state and hovering speed for the propellers or the provided initial state and propeller speed. :param initial_state: The initial state. If None (default) a random state is generated. :param initial_propeller_speed: The initial propeller speed. If None (default) the hovering speed is used. :return: The initial observation. """ if initial_propeller_speed is None: initial_propeller_speed = np.ones( 4) * self.simulation_model.hovering_thrust if initial_state is None: initial_state = self.random_state() if initial_state.propeller_speed is None: initial_state.propeller_speed = initial_propeller_speed observed_state, initial_dt, initial_obs_age = self.delayed_model.reset( initial_propeller_speed, initial_state) initial_observation = self.state_to_observation( observed_state, initial_dt, initial_obs_age) self.observation_history.reset( initial_observation, initial_propeller_speed * 0.1 / self.simulation_model.hovering_thrust, initial_dt) initial_relative_propeller_speed = self.action_to_propeller_speed.reset( initial_propeller_speed) if self.enable_rendering: self.render(0, initial_state, initial_state, initial_propeller_speed) return self.observation_history.get_observation_with_history( initial_observation, initial_relative_propeller_speed, initial_dt) def on_target_msg(self, channel, msg): # print("new target:", msg.values) assert len(msg.values) == 3 self.state_to_observation.position_offset = msg.values def render(self, reward, state, observed_state, thrust): if self.zcm is None: self.zcm = ZCM("") if self.zcm.good(): self.zcm.subscribe("target", timestamped_vector_double, self.on_target_msg) self.zcm.start() if self.zcm.good(): msg = timestamped_vector_double() msg.ts = int(self.delayed_model.time * 1e9) def publish(channel, data): msg.values = data msg.len = len(data) self.zcm.publish(channel, msg) publish( "quadrotor_viz/quat_pose", np.concatenate([state.position, state.rotation.components])) publish( "quadrotor_viz/quat_pose_noised", np.concatenate([ observed_state.position, observed_state.rotation.components ])) publish("quadrotor_viz/velocity", state.velocity) publish("quadrotor_viz/rotation_rate", state.angular_velocity) publish("quadrotor_viz/rotatorspeed", state.propeller_speed) publish("quadrotor_viz/control", thrust) publish("quadrotor_viz/reward", [reward]) @property def time(self): return self.delayed_model.time def get_current_state(self) -> SysState: return self.delayed_model.compute_current_state()