Ejemplo n.º 1
0
def qr_fact_househ(matrixA):
    m = matrixA.shape[0]
    n = matrixA.shape[1]

    #get Householder vector for first column of A
    H = make_h(matrixA.T[0])
    Q = H

    for i in range(n):
        result = np.dot(Q, matrixA)
        result = result.T
        col = result[i, i:]
        smaller_matrix = make_h(col)
        height_1 = len(col)
        I = np.eye(n)

        #reverse all the H and V entries in matrix
        reverse = np.flipud(np.fliplr(smaller_matrix))

        #want to insert smaller_matrix into H2 (matrix of zeros)
        for r in range(reverse.shape[0]):
            for c in range(reverse.shape[1]):
                I[I.shape[0] - r - 1, I.shape[1] - c - 1] = reverse[r, c]
        Q = mult(I, Q)

    R = mult(Q, matrixA)

    errorMatrix = np.dot(Q, R) - A
    error = find_max(errorMatrix)
    x = solve_qr_b(Q, R, b)

    return Q.T, R, error, x
Ejemplo n.º 2
0
def qr_fact_givens(matrixA):
    Q = np.eye(matrixA.shape[0])
    R = matrixA
    for y in range(matrixA.shape[1]):
        for num in range(matrixA.shape[0]):
            if y is num:
                pivot = (num, y)
            if y < num:
                identity = np.eye(matrixA.shape[0])
                cosX, sinX = make_givens(R, pivot, (num, y))
                identity[num][num] = cosX
                identity[y][y] = cosX
                identity[y][num] = sinX
                identity[num][y] = -sinX
                R = mult(identity, R)
                Q = Q.dot(identity.T)

    #error value of ||QR - A||
    errorValue = 0
    errorMatrix = mult(Q,R) - A
    for i in range(errorMatrix.shape[0]):
        for j in range(errorMatrix.shape[1]):
            if (errorValue < errorMatrix[i, j]):
                errorValue = errorMatrix[i, j]

    x = solve_qr_b(Q, R, b)
    return Q, R, errorValue, x