Ejemplo n.º 1
0
def inference_ad3(unary_potentials,
                  pairwise_potentials,
                  edges,
                  relaxed=False,
                  verbose=0,
                  return_energy=False):
    import AD3
    shape_org = unary_potentials.shape[:-1]
    n_states, pairwise_potentials = \
        _validate_params(unary_potentials, pairwise_potentials, edges)

    unaries = unary_potentials.reshape(-1, n_states)
    res = AD3.general_graph(unaries,
                            edges,
                            pairwise_potentials,
                            verbose=verbose)
    unary_marginals, pairwise_marginals, energy = res
    #n_fractional = np.sum(unary_marginals.max(axis=-1) < .99)
    #if n_fractional:
    #print("fractional solutions found: %d" % n_fractional)
    if relaxed:
        unary_marginals = unary_marginals.reshape(unary_potentials.shape)
        y = (unary_marginals, pairwise_marginals)
    else:
        y = np.argmax(unary_marginals, axis=-1)
        y = y.reshape(shape_org)
    if return_energy:
        return y, -energy
    return y
Ejemplo n.º 2
0
def _inference_ad3(x, unary_params, pairwise_params, edges,
                   relaxed=False, verbose=0):
    raise NotImplementedError("AD3 doesn't work on graphs yet!")
    res = AD3.simple_grid(unary_params * x, pairwise_params, verbose=verbose)
    unary_marginals, pairwise_marginals, energy = res
    n_fractional = np.sum(unary_marginals.max(axis=-1) < .99)
    if n_fractional:
        print("fractional solutions found: %d" % n_fractional)
    if relaxed:
        unary_marginals = unary_marginals.reshape(x.shape)
        pairwise_accumulated = pairwise_marginals.sum(axis=0)
        pairwise_accumulated = pairwise_accumulated.reshape(x.shape[-1],
                                                            x.shape[-1])
        y = (unary_marginals, pairwise_accumulated)
    else:
        y = np.argmax(unary_marginals, axis=-1)
        y = y.reshape(x.shape[0], x.shape[1])
    return y
Ejemplo n.º 3
0
def inference_ad3(unary_potentials, pairwise_potentials, edges, relaxed=False,
                  verbose=0, return_energy=False):
    import AD3
    shape_org = unary_potentials.shape[:-1]
    n_states, pairwise_potentials = \
        _validate_params(unary_potentials, pairwise_potentials, edges)

    unaries = unary_potentials.reshape(-1, n_states)
    res = AD3.general_graph(unaries, edges, pairwise_potentials,
                            verbose=verbose)
    unary_marginals, pairwise_marginals, energy = res
    #n_fractional = np.sum(unary_marginals.max(axis=-1) < .99)
    #if n_fractional:
        #print("fractional solutions found: %d" % n_fractional)
    if relaxed:
        unary_marginals = unary_marginals.reshape(unary_potentials.shape)
        y = (unary_marginals, pairwise_marginals)
    else:
        y = np.argmax(unary_marginals, axis=-1)
        y = y.reshape(shape_org)
    if return_energy:
        return y, -energy
    return y