Ejemplo n.º 1
0
                voltage_test = bl.segments[i].analogsignals[0].magnitude
                current_test = bl.segments[i].analogsignals[1].magnitude - 5.
                experiment.addTestSetTrace(voltage_test,
                                           10.**-3,
                                           current_test,
                                           10.**-12,
                                           len(voltage_test) *
                                           sampling_time_test,
                                           FILETYPE='Array')

        #################################################################################################
        # PERFORM ACTIVE ELECTRODE COMPENSATION
        #################################################################################################

        # Create new object to perform AEC
        myAEC = AEC_Badel(experiment.dt)

        # Define metaparametres
        myAEC.K_opt.setMetaParameters(length=150.0,
                                      binsize_lb=experiment.dt,
                                      binsize_ub=2.0,
                                      slope=30.0,
                                      clamp_period=1.0)
        myAEC.p_expFitRange = [3.0, 150.0]
        myAEC.p_nbRep = 15

        # Assign myAEC to experiment and compensate the voltage recordings
        experiment.setAEC(myAEC)
        experiment.performAEC()

        # Determine the refractory period
Ejemplo n.º 2
0
def process_all_files_for_iGIF_Ca_NP(is_E_Ca_fixed=True):
    if is_E_Ca_fixed:
        spec_GIF_Ca = 'ECa_fixed_'
    else:
        spec_GIF_Ca = 'ECa_free_'
    Md_star = {}
    epsilon_V_test = {}
    PVar = {}

    # List separate experiments in separate folder
    data_folders_for_separate_experiments = [
        'seventh_set', 'eighth_set', 'ninth_set'
    ]

    # For all experiments, extract the cell names
    CellNames = {}
    for experiment_folder in data_folders_for_separate_experiments:
        folder_path = './' + experiment_folder + '/'
        CellNames[experiment_folder] = [
            name for name in os.listdir(folder_path)
            if os.path.isdir(folder_path + name) and '_5HT' in name
        ]
    CellNames['eighth_set'].remove('DRN157_5HT')  # problematic cell
    CellNames['eighth_set'].remove('DRN164_5HT')  # problematic cell

    for experiment_folder in data_folders_for_separate_experiments:
        for cell_name in CellNames[experiment_folder]:
            print '\n\n#############################################'
            print '##########     process cell %s    ###' % cell_name
            print '#############################################'

            #################################################################################################
            # Load data
            #################################################################################################

            path_data = './' + experiment_folder + '/' + cell_name + '/'
            path_results = './Results/' + cell_name + '/'

            # Find extension of data files
            file_names = os.listdir(path_data)
            for file_name in file_names:
                if '.abf' in file_name:
                    ext = '.abf'
                    break
                elif '.mat' in file_name:
                    ext = '.mat'
                    break

            # Load AEC data
            filename_AEC = path_data + cell_name + '_aec' + ext
            (sampling_timeAEC, voltage_traceAEC,
             current_traceAEC) = load_AEC_data(filename_AEC)

            # Create experiment
            experiment = Experiment('Experiment 1', sampling_timeAEC)
            experiment.setAECTrace(voltage_traceAEC,
                                   10.**-3,
                                   current_traceAEC,
                                   10.**-12,
                                   len(voltage_traceAEC) * sampling_timeAEC,
                                   FILETYPE='Array')

            # Load training set data and add to experiment object
            filename_training = path_data + cell_name + '_training' + ext
            (sampling_time, voltage_trace, current_trace,
             time) = load_training_data(filename_training)
            experiment.addTrainingSetTrace(voltage_trace,
                                           10**-3,
                                           current_trace,
                                           10**-12,
                                           len(voltage_trace) * sampling_time,
                                           FILETYPE='Array')
            #Note: once added to experiment, current is converted to nA.

            # Load test set data
            filename_test = path_data + cell_name + '_test' + ext
            if filename_test.find('.mat') > 0:
                mat_contents = sio.loadmat(filename_test)
                analogSignals = mat_contents['analogSignals']
                times_test = mat_contents['times']
                times_test = times_test.reshape(times_test.size)
                times_test = times_test * 10.**3
                sampling_time_test = times_test[1] - times_test[0]
                for testnum in range(analogSignals.shape[1]):
                    voltage_test = analogSignals[0, testnum, :]
                    current_test = analogSignals[1, testnum, :] - 5.
                    experiment.addTestSetTrace(voltage_test,
                                               10.**-3,
                                               current_test,
                                               10.**-12,
                                               len(voltage_test) *
                                               sampling_time_test,
                                               FILETYPE='Array')
            elif filename_test.find('.abf') > 0:
                r = neo.io.AxonIO(filename=filename_test)
                bl = r.read_block()
                times_test = bl.segments[0].analogsignals[0].times.rescale(
                    'ms').magnitude
                sampling_time_test = times_test[1] - times_test[0]
                for i in xrange(len(bl.segments)):
                    voltage_test = bl.segments[i].analogsignals[0].magnitude
                    current_test = bl.segments[i].analogsignals[
                        1].magnitude - 5.
                    experiment.addTestSetTrace(voltage_test,
                                               10.**-3,
                                               current_test,
                                               10.**-12,
                                               len(voltage_test) *
                                               sampling_time_test,
                                               FILETYPE='Array')

            #################################################################################################
            # PERFORM ACTIVE ELECTRODE COMPENSATION
            #################################################################################################

            # Create new object to perform AEC
            myAEC = AEC_Badel(experiment.dt)

            # Define metaparametres
            myAEC.K_opt.setMetaParameters(length=150.0,
                                          binsize_lb=experiment.dt,
                                          binsize_ub=2.0,
                                          slope=30.0,
                                          clamp_period=1.0)
            myAEC.p_expFitRange = [3.0, 150.0]
            myAEC.p_nbRep = 15

            # Assign myAEC to experiment and compensate the voltage recordings
            experiment.setAEC(myAEC)
            experiment.performAEC()

            #################################################################################################
            # FIT GIF-Ca
            #################################################################################################

            # Create a new object GIF
            iGIF_Ca_NP_fit = iGIF_Ca_NP(experiment.dt)

            # Define parameters
            iGIF_Ca_NP_fit.Tref = 6.0
            iGIF_Ca_NP_fit.eta = Filter_Rect_LogSpaced()
            iGIF_Ca_NP_fit.eta.setMetaParameters(length=2000.0,
                                                 binsize_lb=0.5,
                                                 binsize_ub=500.0,
                                                 slope=10.0)
            iGIF_Ca_NP_fit.gamma = Filter_Rect_LogSpaced()
            iGIF_Ca_NP_fit.gamma.setMetaParameters(length=2000.0,
                                                   binsize_lb=2.0,
                                                   binsize_ub=500.0,
                                                   slope=5.0)

            for tr in experiment.trainingset_traces:
                tr.setROI(
                    [[2000.,
                      sampling_time * (len(voltage_trace) - 1) - 2000.]])

            # Define metaparameters used during the fit
            theta_inf_nbbins = 10  # Number of rect functions used to define the nonlinear coupling between
            theta_range_min = 10.
            theta_range_max = 20.
            theta_tau_all = np.linspace(
                theta_range_min, theta_range_max, theta_inf_nbbins
            )  # tau_theta is the timescale of the threshold-voltage coupling
            likelihoods = iGIF_Ca_NP_fit.fit(experiment,
                                             theta_inf_nbbins=theta_inf_nbbins,
                                             theta_tau_all=theta_tau_all,
                                             DT_beforeSpike=5.0,
                                             is_E_Ca_fixed=is_E_Ca_fixed)

            if iGIF_Ca_NP_fit.theta_tau < theta_tau_all[0] + 0.1 * (20. -
                                                                    10.) / 9.:
                theta_tau_all = np.linspace(theta_range_min - 9.,
                                            theta_range_max - 10.,
                                            theta_inf_nbbins)
                likelihoods = iGIF_Ca_NP_fit.fit(
                    experiment,
                    theta_inf_nbbins=theta_inf_nbbins,
                    theta_tau_all=theta_tau_all,
                    DT_beforeSpike=5.0,
                    is_E_Ca_fixed=is_E_Ca_fixed)

            while iGIF_Ca_NP_fit.theta_tau > theta_tau_all[-1] - 0.1 * (
                    20. - 10.) / 9.:
                theta_range_min = theta_range_min + 10.
                theta_range_max = theta_range_max + 10.
                theta_tau_all = np.linspace(theta_range_min, theta_range_max,
                                            theta_inf_nbbins)
                print 'testing range for theta_tau = [%f, %f]...' % (
                    theta_range_min, theta_range_max)
                likelihoods = iGIF_Ca_NP_fit.fit(
                    experiment,
                    theta_inf_nbbins=theta_inf_nbbins,
                    theta_tau_all=theta_tau_all,
                    DT_beforeSpike=5.0,
                    is_E_Ca_fixed=is_E_Ca_fixed)
                print 'max likelihood = %f' % np.max(np.array(likelihoods))
            iGIF_Ca_NP_fit.save(path_results + cell_name + '_iGIF_Ca_NP_' +
                                spec_GIF_Ca + 'ModelParams.pck')

            ###################################################################################################
            # EVALUATE MODEL PERFORMANCES ON THE TEST SET DATA
            ###################################################################################################

            # predict spike times in test set
            prediction = experiment.predictSpikes(iGIF_Ca_NP_fit, nb_rep=500)

            # Compute epsilon_V
            epsilon_V = 0.
            local_counter = 0.
            for tr in experiment.testset_traces:
                SSE = 0.
                VAR = 0.
                # tr.detectSpikesWithDerivative(threshold=10)
                (time, V_est, eta_sum_est
                 ) = iGIF_Ca_NP_fit.simulateDeterministic_forceSpikes(
                     tr.I, tr.V[0], tr.getSpikeTimes())
                indices_tmp = tr.getROI_FarFromSpikes(5., iGIF_Ca_NP_fit.Tref)

                SSE += sum((V_est[indices_tmp] - tr.V[indices_tmp])**2)
                VAR += len(indices_tmp) * np.var(tr.V[indices_tmp])
                epsilon_V += 1.0 - SSE / VAR
                local_counter += 1
            epsilon_V = epsilon_V / local_counter
            epsilon_V_test[cell_name] = epsilon_V

            # Compute Md*
            Md_star[cell_name] = prediction.computeMD_Kistler(
                8.0, iGIF_Ca_NP_fit.dt * 2.)
            fname = path_results + cell_name + '_iGIF_Ca_NP_' + spec_GIF_Ca + 'Raster.png'
            kernelForPSTH = 50.0
            PVar[cell_name] = prediction.plotRaster(fname, delta=kernelForPSTH)

            #################################################################################################
            #  PLOT TRAINING AND TEST TRACES, MODEL VS EXPERIMENT
            #################################################################################################

            #Comparison for training and test sets w/o inactivation
            V_training = experiment.trainingset_traces[0].V
            I_training = experiment.trainingset_traces[0].I
            (time, V, eta_sum, V_t,
             S) = iGIF_Ca_NP_fit.simulate(I_training, V_training[0])
            fig = plt.figure(figsize=(10, 6), facecolor='white')
            plt.subplot(2, 1, 1)
            plt.plot(time / 1000, V, '--r', lw=0.5, label='iGIF-Ca-NP')
            plt.plot(time / 1000, V_training, 'black', lw=0.5, label='Data')
            plt.xlim(18, 20)
            plt.ylim(-80, 20)
            plt.ylabel('Voltage [mV]')
            plt.title('Training')

            V_test = experiment.testset_traces[0].V
            I_test = experiment.testset_traces[0].I
            (time, V, eta_sum, V_t,
             S) = iGIF_Ca_NP_fit.simulate(I_test, V_test[0])
            plt.subplot(2, 1, 2)
            plt.plot(time / 1000, V, '--r', lw=0.5, label='iGIF-Ca-NP')
            plt.plot(time / 1000, V_test, 'black', lw=0.5, label='Data')
            plt.xlim(5, 7)
            plt.ylim(-80, 20)
            plt.xlabel('Times [s]')
            plt.ylabel('Voltage [mV]')
            plt.title('Test')
            plt.legend()
            plt.tight_layout()
            plt.savefig(path_results + cell_name + '_iGIF_Ca_NP_' +
                        spec_GIF_Ca + 'simulate.png',
                        format='png')
            plt.close()

    output_file = open(
        './Results/' + 'iGIF_Ca_NP_' + spec_GIF_Ca + 'FitPerformance.dat', 'w')
    output_file.write('#Cell name\tMd*\tEpsilonV\tPVar\n')

    for experiment_folder in data_folders_for_separate_experiments:
        for cell_name in CellNames[experiment_folder]:
            output_file.write(cell_name + '\t' + str(Md_star[cell_name]) +
                              '\t' + str(epsilon_V_test[cell_name]) + '\t' +
                              str(PVar[cell_name]) + '\n')
    output_file.close()
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1010.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1010.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1011.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1011.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1012.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1012.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1013.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1013.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1014.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1014.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1015.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1015.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1016.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1016.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1017.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1017.ibw', 1.0, 20000.0, FILETYPE='Igor')


############################################################################################################
# STEP 2A: ACTIVE ELECTRODE COMPENSATION
############################################################################################################

# Create new object to perform AEC
myAEC = AEC_Badel(myExp.dt)

# Define metaparametres
myAEC.K_opt.setMetaParameters(length=150.0, binsize_lb=myExp.dt, binsize_ub=2.0, slope=30.0, clamp_period=1.0)
myAEC.p_expFitRange = [3.0,150.0]  
myAEC.p_nbRep = 5     

# Assign myAEC to myExp and compensate the voltage recordings
myExp.setAEC(myAEC)  
myExp.performAEC()  


############################################################################################################
# STEP 2B: TO NOT PERFORM ACTIVE ELECTRODE COMPENSATION DO NOT RUN STEP 2A AND EXECUTE STEP 2B INSTEAD
############################################################################################################
"""
Ejemplo n.º 4
0
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1014.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1014.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1015.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1015.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1016.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1016.ibw', 1.0, 20000.0, FILETYPE='Igor')
myExp.addTestSetTrace(PATH + 'Cell3_Ger1Test_ch2_1017.ibw', 1.0, PATH + 'Cell3_Ger1Test_ch3_1017.ibw', 1.0, 20000.0, FILETYPE='Igor')

# Plot data
#myExp.plotTrainingSet()
#myExp.plotTestSet()


############################################################################################################
# STEP 2: ACTIVE ELECTRODE COMPENSATION
############################################################################################################

# Create new object to perform AEC
myAEC = AEC_Badel(myExp.dt)

# Define metaparametres
myAEC.K_opt.setMetaParameters(length=150.0, binsize_lb=myExp.dt, binsize_ub=2.0, slope=30.0, clamp_period=1.0)
myAEC.p_expFitRange = [3.0,150.0]  
myAEC.p_nbRep = 15     

# Assign myAEC to myExp and compensate the voltage recordings
myExp.setAEC(myAEC)  
myExp.performAEC()  

# Plot AEC filters (Kopt and Ke)
myAEC.plotKopt()
myAEC.plotKe()

# Plot training and test set
Ejemplo n.º 5
0
                      1.0,
                      PATH + 'Cell3_Ger1Test_ch3_1017.ibw',
                      1.0,
                      20000.0,
                      FILETYPE='Igor')

# Plot data
#myExp.plotTrainingSet()
#myExp.plotTestSet()

############################################################################################################
# STEP 2: ACTIVE ELECTRODE COMPENSATION
############################################################################################################

# Create new object to perform AEC
myAEC = AEC_Badel(myExp.dt)

# Define metaparametres
myAEC.K_opt.setMetaParameters(length=150.0,
                              binsize_lb=myExp.dt,
                              binsize_ub=2.0,
                              slope=30.0,
                              clamp_period=1.0)
myAEC.p_expFitRange = [3.0, 150.0]
myAEC.p_nbRep = 15

# Assign myAEC to myExp and compensate the voltage recordings
myExp.setAEC(myAEC)
myExp.performAEC()

# Plot AEC filters (Kopt and Ke)
Ejemplo n.º 6
0
def process_all_files_for_GIF_K(is_E_K_fixed=True):
    if is_E_K_fixed:
        spec_GIF_K = 'EK_fixed_'
    else:
        spec_GIF_K = 'EK_free_'
    Md_star = {}
    epsilon_V_test = {}
    PVar = {}

    # List separate experiments in separate folder
    data_folders_for_separate_experiments = ['seventh_set', 'eighth_set', 'ninth_set', 'tenth_set']

    # For all experiments, extract the cell names
    CellNames = {}
    for experiment_folder in data_folders_for_separate_experiments:
        folder_path = './' + experiment_folder + '/'
        CellNames[experiment_folder] = [name for name in os.listdir(folder_path) if os.path.isdir(folder_path + name) and '_5HT' in name]


    for experiment_folder in data_folders_for_separate_experiments:
        for cell_name in CellNames[experiment_folder]:
            print '\n\n#############################################'
            print '##########     process cell %s    ###' %cell_name
            print '#############################################'


            #################################################################################################
            # Load data
            #################################################################################################

            path_data = './' + experiment_folder + '/' + cell_name + '/'
            path_results = './Results/' + cell_name + '/'

            if not os.path.exists(path_results):
                os.makedirs(path_results)

            # Find extension of data files
            file_names = os.listdir(path_data)
            for file_name in file_names:
                if '.abf' in file_name:
                    ext = '.abf'
                    break
                elif '.mat' in file_name:
                    ext = '.mat'
                    break

            # Load AEC data
            filename_AEC = path_data + cell_name + '_aec' + ext
            (sampling_timeAEC, voltage_traceAEC, current_traceAEC) = load_AEC_data(filename_AEC)

            # Create experiment
            experiment = Experiment('Experiment 1', sampling_timeAEC)
            experiment.setAECTrace(voltage_traceAEC, 10.**-3, current_traceAEC, 10.**-12, len(voltage_traceAEC)*sampling_timeAEC, FILETYPE='Array')

            # Load training set data and add to experiment object
            filename_training = path_data + cell_name + '_training' + ext
            (sampling_time, voltage_trace, current_trace, time) = load_training_data(filename_training)
            experiment.addTrainingSetTrace(voltage_trace, 10**-3, current_trace, 10**-12, len(voltage_trace)*sampling_time, FILETYPE='Array')
            #Note: once added to experiment, current is converted to nA.

            # Load test set data
            filename_test = path_data + cell_name + '_test' + ext
            if filename_test.find('.mat') > 0:
                mat_contents = sio.loadmat(filename_test)
                analogSignals = mat_contents['analogSignals']
                times_test = mat_contents['times'];
                times_test = times_test.reshape(times_test.size)
                times_test = times_test*10.**3
                sampling_time_test = times_test[1] - times_test[0]
                for testnum in range(analogSignals.shape[1]):
                    voltage_test = analogSignals[0, testnum, :]
                    current_test = analogSignals[1, testnum, :] - 5.
                    experiment.addTestSetTrace(voltage_test, 10. ** -3, current_test, 10. ** -12,
                                               len(voltage_test) * sampling_time_test, FILETYPE='Array')
            elif filename_test.find('.abf') > 0:
                r = neo.io.AxonIO(filename=filename_test)
                bl = r.read_block()
                times_test = bl.segments[0].analogsignals[0].times.rescale('ms').magnitude
                sampling_time_test = times_test[1] - times_test[0]
                for i in xrange(len(bl.segments)):
                    voltage_test = bl.segments[i].analogsignals[0].magnitude
                    current_test = bl.segments[i].analogsignals[1].magnitude - 5.
                    experiment.addTestSetTrace(voltage_test, 10. ** -3, current_test, 10. ** -12,
                                               len(voltage_test) * sampling_time_test, FILETYPE='Array')


            #################################################################################################
            # PERFORM ACTIVE ELECTRODE COMPENSATION
            #################################################################################################

            # Create new object to perform AEC
            myAEC = AEC_Badel(experiment.dt)

            # Define metaparametres
            myAEC.K_opt.setMetaParameters(length=150.0, binsize_lb=experiment.dt, binsize_ub=2.0, slope=30.0, clamp_period=1.0)
            myAEC.p_expFitRange = [3.0,150.0]
            myAEC.p_nbRep = 15

            # Assign myAEC to experiment and compensate the voltage recordings
            experiment.setAEC(myAEC)
            experiment.performAEC()


            #################################################################################################
            # FIT GIF-K
            #################################################################################################

            # Create a new object GIF
            GIF_K_fit = GIF_K(sampling_time)

            # Define parameters and filter characteristics
            GIF_K_fit.Tref = 6.0
            GIF_K_fit.eta = Filter_Rect_LogSpaced()
            GIF_K_fit.eta.setMetaParameters(length=2000.0, binsize_lb=0.5, binsize_ub=500.0, slope=10.0)
            GIF_K_fit.gamma = Filter_Rect_LogSpaced()
            GIF_K_fit.gamma.setMetaParameters(length=2000.0, binsize_lb=2.0, binsize_ub=500.0, slope=5.0)

            # Define the ROI of the training set to be used for the fit
            for tr in experiment.trainingset_traces:
                tr.setROI([[2000., sampling_time * (len(voltage_trace) - 1) - 2000.]])

            # Perform the fit
            (var_explained_dV, var_explained_V_GIF_K_train) = GIF_K_fit.fit(experiment, DT_beforeSpike=5.0,
                                                                              is_E_K_fixed=is_E_K_fixed)
            # Save the model
            GIF_K_fit.save(path_results + cell_name + '_GIF_K_'+spec_GIF_K+'ModelParams' + '.pck')

            ###################################################################################################
            # EVALUATE MODEL PERFORMANCES ON THE TEST SET DATA
            ###################################################################################################

            # predict spike times in test set
            prediction = experiment.predictSpikes(GIF_K_fit, nb_rep=500)

            # Compute epsilon_V
            epsilon_V = 0.
            local_counter = 0.
            for tr in experiment.testset_traces:
                SSE = 0.
                VAR = 0.
                # tr.detectSpikesWithDerivative(threshold=10)
                (time, V_est, eta_sum_est) = GIF_K_fit.simulateDeterministic_forceSpikes(tr.I, tr.V[0], tr.getSpikeTimes())
                indices_tmp = tr.getROI_FarFromSpikes(5., GIF_K_fit.Tref)

                SSE += sum((V_est[indices_tmp] - tr.V[indices_tmp]) ** 2)
                VAR += len(indices_tmp) * np.var(tr.V[indices_tmp])
                epsilon_V += 1.0 - SSE / VAR
                local_counter += 1
            epsilon_V = epsilon_V / local_counter
            epsilon_V_test[cell_name] = epsilon_V

            # Compute Md*
            Md_star[cell_name] = prediction.computeMD_Kistler(8.0, GIF_K_fit.dt*2.)
            fname = path_results  + cell_name  + '_GIF_K_' + spec_GIF_K + 'Raster.png'
            kernelForPSTH = 50.0
            PVar[cell_name] = prediction.plotRaster(fname, delta=kernelForPSTH)


            #################################################################################################
            #  PLOT TRAINING AND TEST TRACES, MODEL VS EXPERIMENT
            #################################################################################################

            #Comparison for training and test sets w/o inactivation
            V_training = experiment.trainingset_traces[0].V
            I_training = experiment.trainingset_traces[0].I
            (time, V, eta_sum, V_t, S) = GIF_K_fit.simulate(I_training, V_training[0])
            fig = plt.figure(figsize=(10,6), facecolor='white')
            plt.subplot(2,1,1)
            plt.plot(time/1000, V,'--r', lw=0.5, label='GIF-K')
            plt.plot(time/1000, V_training,'black', lw=0.5, label='Data')
            plt.xlim(18,20)
            plt.ylim(-80,20)
            plt.ylabel('Voltage [mV]')
            plt.title('Training')

            V_test = experiment.testset_traces[0].V
            I_test = experiment.testset_traces[0].I
            (time, V, eta_sum, V_t, S) = GIF_K_fit.simulate(I_test, V_test[0])
            plt.subplot(2,1,2)
            plt.plot(time/1000, V,'--r', lw=0.5, label='GIF-K')
            plt.plot(time/1000, V_test,'black', lw=0.5, label='Data')
            plt.xlim(5,7)
            plt.ylim(-80,20)
            plt.xlabel('Times [s]')
            plt.ylabel('Voltage [mV]')
            plt.title('Test')
            plt.legend()
            plt.tight_layout()
            plt.savefig(path_results  + cell_name + '_GIF_K_' + spec_GIF_K + 'simulate.png', format='png')
            plt.close()

            # Figure comparing V_model, V_data and I during training with forced spikes
            (time, V, eta_sum) = GIF_K_fit.simulateDeterministic_forceSpikes(I_training, V_training[0], experiment.trainingset_traces[0].getSpikeTimes())
            I_K = GIF_K_fit.I_K_with_Deterministic_forceSpikes(I_training, V_training[0],
                                                                  experiment.trainingset_traces[0].getSpikeTimes())
            fig = plt.figure(figsize=(10,6), facecolor='white')
            plt.subplot(2,1,1)
            plt.plot(time/1000, I_training,'-b', lw=0.5, label='$I$')
            plt.plot(time / 1000, I_K, '--r', lw=0.5, label='$I_\mathrm{K}$')
            plt.xlim(17,20)
            plt.ylabel('Current [nA]')
            plt.title('Training')
            plt.subplot(2,1,2)
            plt.plot(time/1000, V,'-b', lw=0.5, label='GIF')
            plt.plot(time/1000, V_training,'black', lw=0.5, label='Data')
            plt.xlim(17,20)
            plt.ylim(-75,0)
            plt.ylabel('Time [s]')
            plt.ylabel('Voltage [mV]')
            plt.legend(loc='best')
            plt.savefig(path_results  + cell_name + '_GIF_K_' + spec_GIF_K + 'simulateForcedSpikes_Training.png', format='png')
            plt.close(fig)

    output_file = open('./Results/' + 'GIF_K_'+spec_GIF_K+'FitPerformance.dat','w')
    output_file.write('#Cell name\tMd*\tEpsilonV\tPVar\n')

    for experiment_folder in data_folders_for_separate_experiments:
        for cell_name in CellNames[experiment_folder]:
            output_file.write(cell_name + '\t' + str(Md_star[cell_name]) + '\t' + str(epsilon_V_test[cell_name]) + '\t' + str(PVar[cell_name]) + '\n')
    output_file.close()