Ejemplo n.º 1
0
def search_SIFT_BF(returnCount=100, mydataSIFT=mydataSIFT,SIFT_FEATURES_LIMIT=SIFT_FEATURES_LIMIT): 
    imagepredictions , searchtimesift = ImageSearch_Algo_SIFT.SIFT_SEARCH_BF(mydataSIFT, q_path, sift_features_limit=SIFT_FEATURES_LIMIT, lowe_ratio=LOWE_RATIO, predictions_count=returnCount)
    a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagepredictions, 20 )
    # print ('Accuracy =',  a, '%', '| Quality:', d )
    # print ('Count', cnt, ' | position', ind)
    row_dict['acc_sift_BF'] = a
    row_dict['index_sift_BF'] = ind
    row_dict['Count_sift_BF'] = cnt
    row_dict['quality_sift_BF'] = d
    row_dict['time_sift_BF'] = searchtimesift

    return imagepredictions, searchtimesift
Ejemplo n.º 2
0
def search_ORB_BOVW (returnCount=100, write=False) : 
    imagematches, searchtime = ImageSearch_Algo_ORB.ORB_SEARCH_TREE(q_path, myORBmodel, myORBtree, mydataORB, returnCount=100, kp=ORB_FEATURES_LIMIT)
    if write: 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagematches, 20 )
        # print ('Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)
        row_dict['acc_orb_tree'] = a
        row_dict['index_orb_tree'] = ind
        row_dict['Count_orb_tree'] = cnt
        row_dict['quality_orb_tree'] = d
        row_dict['time_orb_tree'] = searchtime
    
    return imagematches, searchtime
Ejemplo n.º 3
0
def search_SIFT_BOVW(returnCount=100, write=False): 
    imagematches, searchtime = ImageSearch_Algo_SIFT.SIFT_SEARCH_TREE(q_path, mySIFTmodel, mySIFTtree, mydataSIFT, returnCount=returnCount, kp=100)
    if write: 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagematches, 20 )
        # print ('Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)
        row_dict['acc_sift_tree'] = a
        row_dict['index_sift_tree'] = ind
        row_dict['Count_sift_tree'] = cnt
        row_dict['quality_sift_tree'] = d
        row_dict['time_sift_tree'] = searchtime

    return imagematches, searchtime
Ejemplo n.º 4
0
def search_ORB_BF2(returnCount=100, mydataORB=mydataORB, write=False) :
    imagematches, searchtime = ImageSearch_Algo_ORB.ORB_SEARCH_MODBF(mydataORB, q_path, ORB_FEATURES_LIMIT , lowe_ratio=LOWE_RATIO, predictions_count=returnCount )
    if write: 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagematches, 20 )
        # print ('Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)
        row_dict['acc_orb_BF2'] = a
        row_dict['index_orb_BF2'] = ind
        row_dict['Count_orb_BF2'] = cnt
        row_dict['quality_orb_BF2'] = d
        row_dict['time_orb_BF2'] = searchtime

    return imagematches, searchtime
Ejemplo n.º 5
0
def search_HASH_All(returnCount=100, write=False): 
    # AlgoGenList = ['whash', 'phash', 'dhash', 'ahash']    
    for algo in AlgoGenList :
        imagematches, searchtime = ImageSearch_Algo_Hash.HASH_SEARCH_TREE(myHASH_Trees[algo], mydataHASH, q_path, hashAlgo=algo, hashsize=16, returnCount=returnCount)
        if write: 
            a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagematches, 20 )
            # print ('Accuracy =',  a, '%', '| Quality:', d )
            # print ('Count', cnt, ' | position', ind)
            row_dict['acc_HASH_'+str(algo)] = a
            row_dict['index_HASH_'+str(algo)] = ind
            row_dict['Count_HASH_'+str(algo)] = cnt
            row_dict['quality_HASH_'+str(algo)] = d
            row_dict['time_HASH_'+str(algo)] = searchtime
Ejemplo n.º 6
0
def search_HASH_HYBRID (returnCount=100, write=False): 
    # HybridAlgoList = ['whash', 'ahash']
    imagematches, searchtime = ImageSearch_Algo_Hash.HASH_SEARCH_HYBRIDTREE( myHybridtree, mydataHASH, q_path,hashAlgoList=HybridAlgoList, hashsize=16, returnCount=returnCount)
    if write: 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagematches, 20 )
        # print ('Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)
        row_dict['acc_HASH_Hybrid'] = a
        row_dict['index_HASH_Hybrid'] = ind
        row_dict['Count_HASH_Hybrid'] = cnt
        row_dict['quality_HASH_Hybrid'] = d
        row_dict['time_HASH_Hybrid'] = searchtime

    return imagematches, searchtime
Ejemplo n.º 7
0
def search_RGB_Corr(returnCount=100, mydataRGB=mydataRGB, write=False): 
    imagematchesrgb , searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH(mydataRGB, q_path, correl_threshold=RGB_PARAMETERCORRELATIONTHRESHOLD)
    # y= autothreshold (imagematchesrgb)
    # toplist = toplist + y
    # print (y)
    if write: 
        a, d, ind, cnt = accuracy.accuracy_matches(q_path, imagematchesrgb, 20)
        row_dict['acc_rgb_corr'] = a
        row_dict['index_rgb_corr'] = ind
        row_dict['Count_rgb_corr'] = cnt
        row_dict['quality_rgb_corr'] = d
        row_dict['time_rgb_corr'] = searchtimergb
        # print ('RGB Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)

    return imagematchesrgb , searchtimergb 
Ejemplo n.º 8
0
def search_RGB(returnCount=100, mydataRGB=mydataRGB, write=False) : 
    imagematchesrgb , searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH_TREE (myRGBtree, mydataRGB, q_path, returnCount=returnCount)
    # y= autothreshold (imagematchesrgb)
    # toplist = toplist + y
    # print (y)
    if write: 
        a, d, ind, cnt = accuracy.accuracy_matches(q_path, imagematchesrgb, 20)
        row_dict['acc_rgb'] = a
        row_dict['index_rgb'] = ind
        row_dict['Count_rgb'] = cnt
        row_dict['quality_rgb'] = d
        row_dict['time_rgb'] = searchtimergb
        # print ('RGB Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', ind)

    return imagematchesrgb , searchtimergb 
Ejemplo n.º 9
0
def search_HSV(returnCount=100, write=False): 
    imagematcheshsv , searchtimehsv = ImageSearch_Algo_HSV.HSV_SEARCH_TREE ( myHSVtree, mydataHSV, q_path, returnCount=returnCount)
    if write: 
        a, d, i_hsv, cnt = accuracy.accuracy_matches(q_path, imagematcheshsv, 20)
        row_dict['acc_hsv'] = a
        row_dict['index_hsv'] = i_hsv
        row_dict['Count_hsv'] = cnt
        row_dict['quality_hsv'] = d
        row_dict['time_hsv'] = searchtimehsv
        # print ('HSV Accuracy =',  a, '%', '| Quality:', d )
        # print ('Count', cnt, ' | position', i_hsv)
        # x = autothreshold (imagematcheshsv)
        # toplist = toplist + x
        # # print (x)

    return imagematcheshsv , searchtimehsv    
Ejemplo n.º 10
0
scores, ind = HSVtree.query(F, k=100)
t = time.time() - start 

print (ind)
print (scores)

# get the index of searchimage 
print (mydataHSV.index[mydataHSV['file'] == q_path])
print (q_path)
print ( "Search took ", t, ' secs')

# Zip results into a list of tuples (score , file) & calculate score 
flist = list (mydataHSV.iloc[ ind[0].tolist()]['file'])
slist = list (scores[0])
result = tuple(zip( slist, flist)) # create a list of tuples from 2 lists 
a , q, pos, cnt = accuracy.accuracy_matches(q_path, result, 100)
print ('Accuracy =',  a, '%', '| Quality:', q )
print ('Count', cnt, ' | position', pos)


# --------------------  KD Tree  HASH (phash, ahash, dhash, whash) ---------------------
# Avg. Time per search: 0.033 s


from sklearn.neighbors import KDTree
import imagehash
import numpy as np
import time 

# YD = np.array(mydataHASH['phash'].apply(imagehash.ImageHash.__hash__))
YD = list(mydataHASH['ahash'])
Ejemplo n.º 11
0
# ------------------ SEARCH TEST

# q_path = random.sample(fileterd_file, 1)[0]
# q_path = './imagesbooks/ukbench00481.jpg'
# imagepredictions , searchtime = SIFT_SEARCH(mydata1, q_path, 50 ,0.75, 20)
imagepredictions, searchtime = ImageSearch_Algo_SIFT(mydatasift, q_path, 100,
                                                     0.75, 20)

# to reload module: uncomment use the following
# %load_ext autoreload
# %autoreload 2

import Accuracy as accuracy

a, b, c, d = accuracy.accuracy_matches(q_path, imagepredictions, 50)
print('Accuracy =', a, '%', d, searchtime)

# import ImageSearch_Plots as myplots
# myplots.plot_predictions(imagepredictions[:20], q_path)

#---------------- Compile data and plot results

# q_paths = random.sample(imagepaths, 50)  # random sample 100 items in list
# q_paths = ['./imagesbooks/ukbench05960.jpg', './imagesbooks/ukbench00459.jpg', './imagesbooks/ukbench06010.jpg', './imagesbooks/ukbench06104.jpg', './imagesbooks/ukbench00458.jpg']
q_paths = [
    './imagesbooks/ukbench05960.jpg', './imagesbooks/ukbench00459.jpg',
    './imagesbooks/ukbench06010.jpg', './imagesbooks/ukbench06104.jpg',
    './imagesbooks/ukbench00458.jpg', './imagesbooks/ukbench00248.jpg',
    './imagesbooks/ukbench06408.jpg', './imagesbooks/ukbench00303.jpg',
    './imagesbooks/ukbench03124.jpg', './imagesbooks/ukbench05776.jpg',
Ejemplo n.º 12
0
def algomixerFunnel (algos, return_count, finalalgo, finalalgoDataframe, algoname='NewAlgo', write=False) : 
    '''
    algos [list]: list of candidare algos
    return_count (int) : number of candidates to be generated 
    finalalgo (str) : list of candidare algos
    finalalgoDataframe (pd.Dataframe): dataframe of the finalAlgo to be filtered and used 
    algoname (str)  : 'column name of datframe for the final reported accuracy, time etc.
    write (bool): True / False -> whether to report funnel accurracy, time before merge with thresholded candidates 
    '''

    # myAlgos = [ search_RGB, search_SIFT_BF ]
    # algomixerFunnel (myAlgos)
    start = time.time()

    algoResults = []
    algoTimes = []
    for algo in algos: 
        algoResult, algoTime = algo_selector (algo, return_count=return_count)
        algoResults.append(algoResult)
        algoTimes.append(algoTime)

    # generate candidates (short listing)
    filteredFeatureData = Thresholding.filter_candidates( algoResults, finalalgoDataframe)
    # run Final Algo (detection) 
    imagepredictions,searchtimesift = algo_selector_final(finalalgo,filteredFeatureData,return_count=return_count)
    if write: 
        # find accuracy and append to dict 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagepredictions, 20)
        t = time.time() - start
        row_dict['acc_'+ algoname + '_BM'] = a
        row_dict['index_'+ algoname + '_BM'] = ind
        row_dict['Count_'+ algoname + '_BM'] = cnt
        row_dict['quality_'+ algoname + '_BM'] = d
        row_dict['time_'+ algoname + '_BM'] = t

    # generate algo uniques: apply threshold for each Result (imagematches)     
    unique_final_list = []
    for Result in algoResults : 
        unique_final_list.append(Thresholding.autothreshold_knee(Result))

    # print (unique_final_list)
    # MERGE OPEARATION FROM ALL RESULTS 
    # algo uniques + final algo detections results 
    final_algo_List = Thresholding.imagepredictions_to_list(imagepredictions)
    
    toplist = unique_final_list.copy()
    # copy all commons from candidates threshold list to front (2 lists)
    toplist = [Thresholding.merge_results( toplist, False)]

    # Add final algo derivatives to toplist 
    toplist.append(final_algo_List)
    # merge lists of algo results: HSV Thresh, RGB Thresh, SIFT
    toplist = Thresholding.merge_results( toplist, False)

    t = time.time() - start

    # find accuracy and append to dict 
    a ,d, ind, cnt = accuracy.accuracy_from_list(q_path, toplist, 20 )
    print ('index F_'+algoname+': ', ind)
    row_dict['acc_'+ algoname] = a
    row_dict['index_'+ algoname] = ind
    row_dict['Count_'+ algoname] = cnt
    row_dict['quality_'+ algoname] = d
    row_dict['time_'+ algoname] = t
Ejemplo n.º 13
0
def search_AlgoA ( candidates=100, verbose=False ): 
    toplist = []
    start = time.time()
    # run RGB
    imagematchesrgb , searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH_TREE (myRGBtree, mydataRGB, q_path, returnCount=candidates)
    # run HSV
    imagematcheshsv , searchtimehsv = ImageSearch_Algo_HSV.HSV_SEARCH_TREE ( myHSVtree, mydataHSV, q_path, returnCount=candidates)
    # create shortlist for SIFT 
    filteredSIFTData = Thresholding.filter_sift_candidates( [imagematcheshsv, imagematchesrgb], mydataSIFT)
    # run SIFT 
    imagepredictions , searchtimesift = ImageSearch_Algo_SIFT.SIFT_SEARCH_BF(filteredSIFTData, q_path, sift_features_limit=100 , lowe_ratio=LOWE_RATIO, predictions_count=SIFT_PREDICTIONS_COUNT)

    # threshold RGB 
    final_RGB_List = Thresholding.autothreshold_knee(imagematchesrgb)

    # thresold HSV 
    final_HSV_List = Thresholding.autothreshold_knee(imagematcheshsv)

    # MERGE OPEARATION FROM ALL RESULTS 
    # SIFT LIST 
    final_SIFT_List = Thresholding.imagepredictions_to_list(imagepredictions)
    
    # merge lists of algo results: HSV Thresh, RGB Thresh, SIFT
    toplist = Thresholding.merge_results([final_HSV_List, final_RGB_List, final_SIFT_List], False)
    
    # find accuracy and append to dict 
    a ,d, ind, cnt = accuracy.accuracy_from_list(q_path, toplist, 20 )
    t = time.time() - start
    row_dict['acc_algo_A'] = a
    row_dict['index_algo_A'] = ind
    row_dict['Count_algo_A'] = cnt
    row_dict['quality_algo_A'] = d
    row_dict['time_algo_A'] = t

    # run if verbose enabled; DEBUGGING
    if verbose: 

        print ('index FINAL AlgoA: ', ind)
        # append SIFT Results 
        a ,d, ind, cnt = accuracy.accuracy_matches(q_path, imagepredictions, 20 )
        print ('SIFT-A Accuracy =',  a, '%', '| Quality:', d )
        print ('SIFT-A Count', cnt, ' | position', ind)
        row_dict['acc_Algo_A_SIFT'] = a
        row_dict['index_Algo_A_SIFT'] = ind
        row_dict['Count_Algo_A_SIFT'] = cnt
        row_dict['quality_Algo_A_SIFT'] = d
        # row_dict['time_Algo_A_SIFT'] = searchtime
        # get current accurracy of RGB     
        a, d, ind, cnt = accuracy.accuracy_matches(q_path, imagematchesrgb, 20)
        print ('index RGB   : ', ind)
        # get thresholded accurracy of RGB     
        a ,d, ind, cnt = accuracy.accuracy_from_list(q_path, final_RGB_List, 20 )
        print ('index RGB Th:', ind)
        # update candidates RGB
        row_dict['index_Algo_A_cRGB'] = ind
        # get current accurracy for HSV
        a, d, ind, cnt = accuracy.accuracy_matches(q_path, imagematcheshsv, 20)
        print ('index HSV   : ', ind)
        # get thresholded accurracy for HSV 
        a ,d, ind, cnt = accuracy.accuracy_from_list(q_path, final_HSV_List, 20 )
        print ('index HSV Th: ', ind)
        # update candidates 
        row_dict['index_Algo_A_cHSV'] = ind


    return imagepredictions, t
Ejemplo n.º 14
0
matcheshsv = []
matchesrgb = []

for q_path in q_paths: 

    toplist = []

    start = time.time()

    row_dict = {'file':q_path }   
    imagematcheshsv , searchtimehsv = ImageSearch_Algo_HSV.HSV_SEARCH_TREE (mytreeHSV, mydataHSV, q_path, 100)

    x = autothreshold (imagematcheshsv)
    toplist = toplist + x
    # print (x)
    a, d, i_hsv, cnt = accuracy.accuracy_matches(q_path, imagematcheshsv, 20)
    row_dict['hsv_acc'] = a
    row_dict['hsv_matchindex'] = i_hsv
    row_dict['hsv_Count'] = cnt
    row_dict['hsv_time'] = searchtimehsv
    print ('HSV Accuracy =',  a, '%', '| Quality:', d )
    print ('Count', cnt, ' | position', i_hsv)
  

    imagematchesrgb , searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH_TREE (mytreeRGB, mydataRGB, q_path, 100)
    y= autothreshold (imagematchesrgb)
    toplist = toplist + y
    # print (y)
    a, d, i_rgb, cnt = accuracy.accuracy_matches(q_path, imagematchesrgb, 20)
    row_dict['rgb_acc'] = a
    row_dict['rgb_matchindex'] = i_rgb
Ejemplo n.º 15
0
start = time.time()
# get the feature for this image 
q_kp, q_des = ImageSearch_Algo_SIFT.FEATURE (q_path)
# get bow cluster
q_clustered_words = cluster_model.predict(q_des) 
# get FV histogram  
q_bow_hist = np.array([np.bincount(q_clustered_words, minlength=n_clusters)])
# search the KDTree for nearest match
dist, result = SIFTtree2.query(q_bow_hist, k=100)
t= time.time() - start
print (result)
print ('SIFT Search Tree: ', t , ' secs')
flist = list (mydataSIFT.iloc[ result[0].tolist()]['file'])
slist = list (dist[0])
matches = tuple(zip( slist, flist)) # create a list of tuples frm 2 lists
a, q, pos, cnt = accuracy.accuracy_matches(q_path, matches, 20)
print('Accuracy =',  a, '%', '| Quality:', q)
print('Count', cnt, ' | position', pos)

################# Unsupervised Clustering ###################
# --------------------------------------------------------- #
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
# --------- find unsupervised cluster ID with KMEANS  
X = img_bow_hist
km = KMeans(n_clusters=200)
km.fit(X)
km.predict(X)
labels = km.labels_
print (labels)
# # update labels to original dataframe
Ejemplo n.º 16
0
q_paths = random.sample(imagepaths, 20)  # random sample 100 items in list

# q_paths = ["./imagesbooks/ukbench00196.jpg", "./imagesbooks/ukbench00199.jpg",  "./imagesbooks/ukbench00296.jpg",  "./imagesbooks/ukbench00298.jpg",  "./imagesbooks/ukbench00299.jpg",  "./imagesbooks/ukbench00300.jpg",  "./imagesbooks/ukbench00302.jpg",  "./imagesbooks/ukbench00303.jpg",  "./imagesbooks/ukbench02730.jpg",  "./imagesbooks/ukbench02740.jpg",  "./imagesbooks/ukbench02743.jpg",  "./imagesbooks/ukbench05608.jpg",  "./imagesbooks/ukbench05932.jpg",  "./imagesbooks/ukbench05933.jpg",  "./imagesbooks/ukbench05934.jpg",  "./imagesbooks/ukbench05935.jpg",  "./imagesbooks/ukbench05952.jpg",  "./imagesbooks/ukbench05953.jpg",  "./imagesbooks/ukbench05954.jpg",  "./imagesbooks/ukbench05955.jpg",  "./imagesbooks/ukbench05956.jpg",  "./imagesbooks/ukbench05957.jpg",  "./imagesbooks/ukbench05958.jpg",  "./imagesbooks/ukbench05959.jpg",  "./imagesbooks/ukbench06148.jpg",  "./imagesbooks/ukbench06149.jpg",  "./imagesbooks/ukbench06150.jpg",  "./imagesbooks/ukbench06151.jpg",  "./imagesbooks/ukbench06558.jpg",  "./imagesbooks/ukbench06559.jpg",  "./imagesbooks/ukbench07285.jpg",  "./imagesbooks/ukbench07588.jpg",  "./imagesbooks/ukbench07589.jpg",  "./imagesbooks/ukbench07590.jpg",  "./imagesbooks/ukbench08540.jpg",  "./imagesbooks/ukbench08542.jpg",  "./imagesbooks/ukbench08592.jpg"]

counter = 1
for q_path in q_paths:
    imagematchesrgb, searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH_TREE(
        myRGBtree, mydataRGB, q_path, 100)
    # imagematchesrgb , searchtimergb = ImageSearch_Algo_RGB.RGB_SEARCH(mydataRGB, q_path, 0.7)

    # to reload module: uncomment use the following
    # %load_ext autoreload
    # %autoreload 2

    import Accuracy as accuracy
    a, d, i_rgb, cnt = accuracy.accuracy_matches(q_path, imagematchesrgb, 20)
    # print ('Accuracy =',  a, '%', '| Quality:', d )
    # print ('Count', cnt, ' | position', i_rgb)

    # import ImageSearch_Plots as myplots
    # myplots.plot_predictions(imagematchesrgb, q_path)

    score = []
    matchesposition = [0] * len(imagematchesrgb)
    for i in i_rgb:
        matchesposition[i] = 1

    # score, file = item
    for item in imagematchesrgb:
        x, y = item
        score.append(x)
Ejemplo n.º 17
0
mydataHSV, mytime = ImageSearch_Algo_HSV.HSV_GEN(imagepaths)
print('HSV Feature Generation time', mytime)

#------------ HSV SEARCH TEST------------------------------#

q_path = random.sample(imagepaths, 1)[0]

# imagematches , searchtime = ImageSearch_Algo_HSV.HSV_SEARCH(mydataHSV, q_path)
imagematches, searchtime = ImageSearch_Algo_HSV.HSV_SEARCH(mydataHSV, q_path)
print('HSV Search time', searchtime)

# to reload module: uncomment use the following
# %load_ext autoreload
# %autoreload 2

a, m, pos, cnt = accuracy.accuracy_matches(q_path, imagematches, 20)
print('Accuracy =', a, '%', ' | Quality: ', m)

# ----- Alternative tree search code [Optimized search time ]

# test TREE SEARCH code

# to create a new tree from dataframe features 'mydataHSV'
mytree = ImageSearch_Algo_HSV.HSV_Create_Tree(mydataHSV, savefile='HSV_Tree')

# to load an existing tree
thistree = ImageSearch_Algo_HSV.HSV_Load_Tree('HSV_Tree')

# sample 1 image
q_path = random.sample(imagepaths, 1)[0]