Ejemplo n.º 1
0
def estimateCBResonances(s, r_max, m_max=5, l_max=5, bins=2500):
    """
	Given pynbody snapshot star and gas SimArrays, computes the resonances of disk on binary as a function of period.
	Disk radius, in au, is convered to angular frequency which will then be used to compute corotation and inner/outer Lindblad resonances.
	Assumption: Assumes m_disk << m_bin which holds in general for simulations considered
	For reference: Kappa, omega computed in ~ 1/day intermediate units.
	Uses approximations from Artymowicz 1994

	Inputs:
	stars,gas: Pynbody snapshot .star and .gas SimArrays (in au, Msol, etc)
	r_max: maximum disk radius for calculations (au)
	bins: number of radial bins to calculate over

	Output:
	Orbital frequency for corotation and inner/outer resonances as float and 2 arrays
	"""
    stars = s.stars
    #gas = s.gas

    #Compute binary angular frequency
    #Strip units from all inputs
    x1 = np.asarray(isaac.strip_units(stars[0]['pos']))
    x2 = np.asarray(isaac.strip_units(stars[1]['pos']))
    v1 = np.asarray(isaac.strip_units(stars[0]['vel']))
    v2 = np.asarray(isaac.strip_units(stars[1]['vel']))
    m1 = np.asarray(isaac.strip_units(stars[0]['mass']))
    m2 = np.asarray(isaac.strip_units(stars[1]['mass']))
    a = AddBinary.calcSemi(x1, x2, v1, v2, m1, m2)
    #omega_b = 2.0*np.pi/AddBinary.aToP(a,m1+m2

    #Find corotation resonance where omega_d ~ omega_b
    r_c = a  #m=1 case
    o_c = 2.0 * np.pi / AddBinary.aToP(r_c, m1 + m2)

    #Find inner lindblad resonances for m = [m_min,m_max]
    #Lindblad resonance: omega = omega_pattern +/- kappa/m for int m > 1
    m_min = 1
    l_min = 1

    omega_Lo = np.zeros((m_max - m_min, l_max - l_min))
    omega_Li = np.zeros((m_max - m_min, l_max - l_min))

    #Find resonance radii, convert to angular frequency
    for m in range(m_min, m_max):
        for l in range(l_min, l_max):
            #oTmp = find_crit_radius(r,omega_d-(kappa/(float(m))),omega_b,bins) #outer LR
            oTmp = np.power(float(m + 1) / l, 2. / 3.) * a
            omega_Lo[m - m_min,
                     l - l_min] = 2.0 * np.pi / AddBinary.aToP(oTmp, m1 + m2)

            #iTmp = find_crit_radius(r,omega_d+(kappa/(float(m))),omega_b,bins) #inner LR
            iTmp = np.power(float(m - 1) / l, 2. / 3.) * a
            omega_Li[m - m_min,
                     l - l_min] = 2.0 * np.pi / AddBinary.aToP(iTmp, m1 + m2)

    return omega_Li, omega_Lo, o_c  #return inner, outer, co angular frequencies
Ejemplo n.º 2
0
def estimateCBResonances(s,r_max,m_max=5,l_max=5,bins=2500):
	"""
	Given pynbody snapshot star and gas SimArrays, computes the resonances of disk on binary as a function of period.
	Disk radius, in au, is convered to angular frequency which will then be used to compute corotation and inner/outer Lindblad resonances.
	Assumption: Assumes m_disk << m_bin which holds in general for simulations considered
	For reference: Kappa, omega computed in ~ 1/day intermediate units.
	Uses approximations from Artymowicz 1994

	Inputs:
	stars,gas: Pynbody snapshot .star and .gas SimArrays (in au, Msol, etc)
	r_max: maximum disk radius for calculations (au)
	bins: number of radial bins to calculate over

	Output:
	Orbital frequency for corotation and inner/outer resonances as float and 2 arrays
	"""
	stars = s.stars
	#gas = s.gas

	#Compute binary angular frequency
	#Strip units from all inputs
	x1 = np.asarray(isaac.strip_units(stars[0]['pos']))
	x2 = np.asarray(isaac.strip_units(stars[1]['pos']))
	v1 = np.asarray(isaac.strip_units(stars[0]['vel']))
	v2 = np.asarray(isaac.strip_units(stars[1]['vel']))
	m1 = np.asarray(isaac.strip_units(stars[0]['mass']))
	m2 = np.asarray(isaac.strip_units(stars[1]['mass']))
	a = AddBinary.calcSemi(x1, x2, v1, v2, m1, m2)
	#omega_b = 2.0*np.pi/AddBinary.aToP(a,m1+m2

	#Find corotation resonance where omega_d ~ omega_b
	r_c = a #m=1 case
	o_c = 2.0*np.pi/AddBinary.aToP(r_c,m1+m2)
        
	#Find inner lindblad resonances for m = [m_min,m_max]
	#Lindblad resonance: omega = omega_pattern +/- kappa/m for int m > 1
	m_min = 1
	l_min = 1    

	omega_Lo = np.zeros((m_max-m_min,l_max-l_min))
	omega_Li = np.zeros((m_max-m_min,l_max-l_min))
   
	#Find resonance radii, convert to angular frequency
	for m in range(m_min,m_max):
		for l in range(l_min,l_max):
		#oTmp = find_crit_radius(r,omega_d-(kappa/(float(m))),omega_b,bins) #outer LR
			oTmp = np.power(float(m+1)/l,2./3.)*a
			omega_Lo[m-m_min,l-l_min] = 2.0*np.pi/AddBinary.aToP(oTmp,m1+m2)
		
		#iTmp = find_crit_radius(r,omega_d+(kappa/(float(m))),omega_b,bins) #inner LR
			iTmp = np.power(float(m-1)/l,2./3.)*a
			omega_Li[m-m_min,l-l_min] = 2.0*np.pi/AddBinary.aToP(iTmp,m1+m2)

	return omega_Li, omega_Lo, o_c #return inner, outer, co angular frequencies
Ejemplo n.º 3
0
def calc_LB_resonance(s,m_min=1,m_max=3,l_min=1,l_max=3):
    """
    Computes the locations of various Lindblad Resonances in the disk as a 
    function of binary pattern speed.
    
     Parameters
     ----------
     s : Tipsy-format snapshot
     m_min, l_min : ints
         minimum orders of (m,l) LR
     m_max,l_max : ints
         maximum orders of (m,l) LR

    Returns
    -------
    OLR, ILR, CR: numpy arrays
        location in AU of (m,l)th order Lindblad resonances
    """

    #Compute binary angular frequency in 1/day
    x1 = s.stars[0]['pos']
    x2 = s.stars[1]['pos']
    v1 = s.stars[0]['vel']
    v2 = s.stars[1]['vel']
    m1 = s.stars[0]['mass']
    m2 = s.stars[1]['mass']
    omega_b = 2.0*np.pi/AddBinary.aToP(AddBinary.calcSemi(x1,x2,v1,v2,m1,m2),m1+m2)
    guess = 0.05 #fsolve initial guess parameter

    #Allocate space for arrays
    OLR = np.zeros((m_max,l_max))
    ILR = np.zeros((m_max,l_max))
    CR = np.zeros(l_max)

    #Define resonance functions
    def OLR_func(omega_d, *args):
        m = args[0]
        l = args[1]
        omega_b = args[2]
        
        return omega_d*(1.0 + float(l)/m) - omega_b
        
    #end function        
        
    def ILR_func(omega_d, *args):
        m = args[0]
        l = args[1]
        omega_b = args[2]
        
        return omega_d*(1.0 - float(l)/m) - omega_b        
        
    #end function

    def CR_func(omega_d, *args):
        l = args[0]
        omega_b = args[1]
        
        return omega_d - omega_b/float(l)

    #end function

    for m in range(m_min,m_max+1):
        for l in range(l_min,l_max+1):
            OLR[m-m_min,l-l_min] = fsolve(OLR_func,guess,args=(m,l,omega_b)) 
            ILR[m-m_min,l-l_min] = fsolve(ILR_func,guess,args=(m,l,omega_b))
            CR[l-l_min] = fsolve(CR_func,guess,args=(l,omega_b))
            
    #Convert from 1/day -> au
    OLR = AddBinary.pToA(2.0*np.pi/OLR,m1+m2)
    ILR = AddBinary.pToA(2.0*np.pi/ILR,m1+m2)
    CR = AddBinary.pToA(2.0*np.pi/CR,m1+m2)        
    
    return OLR, ILR, CR
Ejemplo n.º 4
0
def findCBResonances(s,r,r_min,r_max,m_max=4,l_max=4,bins=50):
    """
    Given Tipsy snapshot, computes the resonances of disk on binary as a function of orbital angular frequency omega.
    Disk radius, in au, is convered to angular frequency which will then be used to compute corotation 
    and inner/outer Lindblad resonances.
   
   Note: r given MUST correspond to r over which de/dt was calculated.  Otherwise, scale gets all messed up
   
   !!! NOTE: This function is awful and deprecated --- do NOT use it.  Instead, use calc_LB_resonance !!!
 
     Parameters
     ----------
     s: Tipsy-format snapshot
     r: array
         radius array over which de/dt was calculated
     r_min,r_max: floats
         min/maximum disk radius for calculations (au)
     bins: int
         number of radial bins to calculate over
     m_max,l_max: ints
         maximum orders of (m,l) LR

    Returns
    -------
    Orbital frequency: numpy array
        for corotation and inner/outer resonances and radii as float and numpy arrays
    """
    stars = s.stars
    gas = s.gas

    m_min = 1 #m >=1 for LRs, CRs
    l_min = 1 #l >=1 for LRs, CRs

    #Compute binary angular frequency
    x1 = stars[0]['pos']
    x2 = stars[1]['pos']
    v1 = stars[0]['vel']
    v2 = stars[1]['vel']
    m1 = stars[0]['mass']
    m2 = stars[1]['mass']
     
    a = strip_units(AddBinary.calcSemi(x1, x2, v1, v2, m1, m2))
    omega_b = 2.0*np.pi/AddBinary.aToP(a,m1+m2) #In units 1/day

    #Make r steps smaller for higher accuracy
    r_arr = np.linspace(r.min(),r.max(),len(r)*10)

    #Compute mass of disk interior to given r
    mask = np.zeros((len(gas),len(r_arr)),dtype=bool)
    m_disk = np.zeros(len(r_arr))
    for i in range(0,len(r_arr)):
        mask[:,i] = gas['rxy'] < r_arr[i]
        m_disk[i] = np.sum(gas['mass'][mask[:,i]])

    #Compute omega_disk in units 1/day (like omega_binary)
    omega_d = 2.0*np.pi/AddBinary.aToP(r_arr,m1+m2+m_disk)
        
    #Compute kappa (radial epicycle frequency = sqrt(r * d(omega^2)/dr + 4*(omega^2))
    o2 = omega_d*omega_d
    dr = r_arr[1] - r_arr[0]
    #dr = (r.max()-r.min())/float(bins) #Assuming r has evenly spaced bins!
    drdo2 = np.gradient(o2,dr) #I mean d/dr(omega^2)
    kappa = np.sqrt(r_arr*drdo2 + 4.0*o2)
   
    #Allocate arrays for output 
    omega_Lo = np.zeros((m_max,l_max))
    omega_Li = np.zeros((m_max,l_max))
    o_c = np.zeros(l_max)   
 
    #Find resonance angular frequency
    for m in range(m_min,m_max+1):
        for l in range(l_min,l_max+1):
            outer = omega_d + (float(l)/m)*kappa
            inner = omega_d - (float(l)/m)*kappa
            omega_Lo[m-m_min,l-l_min] = omega_d[np.argmin(np.fabs(omega_b-outer))]
            omega_Li[m-m_min,l-l_min] = omega_d[np.argmin(np.fabs(omega_b-inner))]

            #Find corotation resonance where omega_d ~ omega_b
            o_c[l-l_min] = omega_d[np.argmin(np.fabs(omega_d-omega_b/float(l)))]

    #Rescale omega_d, kappa to be of length bins again
    omega_d = np.linspace(omega_d.min(),omega_d.max(),bins)
    kappa = np.linspace(kappa.min(),kappa.max(),bins)
    return omega_Li, omega_Lo, o_c, omega_d, kappa
Ejemplo n.º 5
0
def calc_LB_resonance(s, m_min=1, m_max=3, l_min=1, l_max=3):
    """
    Computes the locations of various Lindblad Resonances in the disk as a 
    function of binary pattern speed.
    
     Parameters
     ----------
     s : Tipsy-format snapshot
     m_min, l_min : ints
         minimum orders of (m,l) LR
     m_max,l_max : ints
         maximum orders of (m,l) LR

    Returns
    -------
    OLR, ILR, CR: numpy arrays
        location in AU of (m,l)th order Lindblad resonances
    """

    #Compute binary angular frequency in 1/day
    x1 = s.stars[0]['pos']
    x2 = s.stars[1]['pos']
    v1 = s.stars[0]['vel']
    v2 = s.stars[1]['vel']
    m1 = s.stars[0]['mass']
    m2 = s.stars[1]['mass']
    omega_b = 2.0 * np.pi / AddBinary.aToP(
        AddBinary.calcSemi(x1, x2, v1, v2, m1, m2), m1 + m2)
    guess = 0.05  #fsolve initial guess parameter

    #Allocate space for arrays
    OLR = np.zeros((m_max, l_max))
    ILR = np.zeros((m_max, l_max))
    CR = np.zeros(l_max)

    #Define resonance functions
    def OLR_func(omega_d, *args):
        m = args[0]
        l = args[1]
        omega_b = args[2]

        return omega_d * (1.0 + float(l) / m) - omega_b

    #end function

    def ILR_func(omega_d, *args):
        m = args[0]
        l = args[1]
        omega_b = args[2]

        return omega_d * (1.0 - float(l) / m) - omega_b

    #end function

    def CR_func(omega_d, *args):
        l = args[0]
        omega_b = args[1]

        return omega_d - omega_b / float(l)

    #end function

    for m in range(m_min, m_max + 1):
        for l in range(l_min, l_max + 1):
            OLR[m - m_min, l - l_min] = fsolve(OLR_func,
                                               guess,
                                               args=(m, l, omega_b))
            ILR[m - m_min, l - l_min] = fsolve(ILR_func,
                                               guess,
                                               args=(m, l, omega_b))
            CR[l - l_min] = fsolve(CR_func, guess, args=(l, omega_b))

    #Convert from 1/day -> au
    OLR = AddBinary.pToA(2.0 * np.pi / OLR, m1 + m2)
    ILR = AddBinary.pToA(2.0 * np.pi / ILR, m1 + m2)
    CR = AddBinary.pToA(2.0 * np.pi / CR, m1 + m2)

    return OLR, ILR, CR
Ejemplo n.º 6
0
def findCBResonances(s, r, r_min, r_max, m_max=4, l_max=4, bins=50):
    """
    Given Tipsy snapshot, computes the resonances of disk on binary as a function of orbital angular frequency omega.
    Disk radius, in au, is convered to angular frequency which will then be used to compute corotation 
    and inner/outer Lindblad resonances.
   
   Note: r given MUST correspond to r over which de/dt was calculated.  Otherwise, scale gets all messed up
   
   !!! NOTE: This function is awful and deprecated --- do NOT use it.  Instead, use calc_LB_resonance !!!
 
     Parameters
     ----------
     s: Tipsy-format snapshot
     r: array
         radius array over which de/dt was calculated
     r_min,r_max: floats
         min/maximum disk radius for calculations (au)
     bins: int
         number of radial bins to calculate over
     m_max,l_max: ints
         maximum orders of (m,l) LR

    Returns
    -------
    Orbital frequency: numpy array
        for corotation and inner/outer resonances and radii as float and numpy arrays
    """
    stars = s.stars
    gas = s.gas

    m_min = 1  #m >=1 for LRs, CRs
    l_min = 1  #l >=1 for LRs, CRs

    #Compute binary angular frequency
    x1 = stars[0]['pos']
    x2 = stars[1]['pos']
    v1 = stars[0]['vel']
    v2 = stars[1]['vel']
    m1 = stars[0]['mass']
    m2 = stars[1]['mass']

    a = strip_units(AddBinary.calcSemi(x1, x2, v1, v2, m1, m2))
    omega_b = 2.0 * np.pi / AddBinary.aToP(a, m1 + m2)  #In units 1/day

    #Make r steps smaller for higher accuracy
    r_arr = np.linspace(r.min(), r.max(), len(r) * 10)

    #Compute mass of disk interior to given r
    mask = np.zeros((len(gas), len(r_arr)), dtype=bool)
    m_disk = np.zeros(len(r_arr))
    for i in range(0, len(r_arr)):
        mask[:, i] = gas['rxy'] < r_arr[i]
        m_disk[i] = np.sum(gas['mass'][mask[:, i]])

    #Compute omega_disk in units 1/day (like omega_binary)
    omega_d = 2.0 * np.pi / AddBinary.aToP(r_arr, m1 + m2 + m_disk)

    #Compute kappa (radial epicycle frequency = sqrt(r * d(omega^2)/dr + 4*(omega^2))
    o2 = omega_d * omega_d
    dr = r_arr[1] - r_arr[0]
    #dr = (r.max()-r.min())/float(bins) #Assuming r has evenly spaced bins!
    drdo2 = np.gradient(o2, dr)  #I mean d/dr(omega^2)
    kappa = np.sqrt(r_arr * drdo2 + 4.0 * o2)

    #Allocate arrays for output
    omega_Lo = np.zeros((m_max, l_max))
    omega_Li = np.zeros((m_max, l_max))
    o_c = np.zeros(l_max)

    #Find resonance angular frequency
    for m in range(m_min, m_max + 1):
        for l in range(l_min, l_max + 1):
            outer = omega_d + (float(l) / m) * kappa
            inner = omega_d - (float(l) / m) * kappa
            omega_Lo[m - m_min,
                     l - l_min] = omega_d[np.argmin(np.fabs(omega_b - outer))]
            omega_Li[m - m_min,
                     l - l_min] = omega_d[np.argmin(np.fabs(omega_b - inner))]

            #Find corotation resonance where omega_d ~ omega_b
            o_c[l - l_min] = omega_d[np.argmin(
                np.fabs(omega_d - omega_b / float(l)))]

    #Rescale omega_d, kappa to be of length bins again
    omega_d = np.linspace(omega_d.min(), omega_d.max(), bins)
    kappa = np.linspace(kappa.min(), kappa.max(), bins)
    return omega_Li, omega_Lo, o_c, omega_d, kappa
Ejemplo n.º 7
0
def findCBResonances(s, r, r_min, r_max, m_max=4, l_max=4, bins=50):
    """
    Given Tipsy snapshot, computes the resonances of disk on binary as a function of orbital angular frequency omega.
    Disk radius, in au, is convered to angular frequency which will then be used to compute corotation 
    and inner/outer Lindblad resonances.
   
   Note: r given MUST correspond to r over which de/dt was calculated.  Otherwise, scale gets all messed up
 
     Parameters
     ----------
     s: Tipsy-format snapshot
     r: array
         radius array over which de/dt was calculated
     r_min,r_max: floats
         min/maximum disk radius for calculations (au)
     bins: int
         number of radial bins to calculate over
     m_max,l_max: ints
         maximum orders of (m,l) LR

    Returns
    -------
    Orbital frequency: numpy array
        for corotation and inner/outer resonances and radii as float and numpy arrays
    """
    stars = s.stars

    m_min = 1  #m >=1 for LRs, CRs
    l_min = 1  #l >=1 for LRs, CRs

    #Compute binary angular frequency
    #Strip units from all inputs
    #x1 = np.asarray(isaac.strip_units(stars[0]['pos']))
    #x2 = np.asarray(isaac.strip_units(stars[1]['pos']))
    #v1 = np.asarray(isaac.strip_units(stars[0]['vel']))
    #v2 = np.asarray(isaac.strip_units(stars[1]['vel']))
    #m1 = np.asarray(isaac.strip_units(stars[0]['mass']))
    #m2 = np.asarray(isaac.strip_units(stars[1]['mass']))
    x1 = stars[0]['pos']
    x2 = stars[1]['pos']
    v1 = stars[0]['vel']
    v2 = stars[1]['vel']
    m1 = stars[0]['mass']
    m2 = stars[1]['mass']

    a = isaac.strip_units(AddBinary.calcSemi(x1, x2, v1, v2, m1, m2))
    omega_b = 2.0 * np.pi / AddBinary.aToP(a, m1 + m2)  #In units 1/day

    #Compute omega_disk in units 1/day (like omega_binary)
    omega_d = 2.0 * np.pi / AddBinary.aToP(r, m1 + m2)

    #Compute kappa (radial epicycle frequency = sqrt(r * d(omega^2)/dr + 4*(omega^2))
    o2 = omega_d * omega_d
    dr = (r.max() - r.min()) / float(bins)  #Assuming r has evenly spaced bins!
    drdo2 = np.gradient(o2, dr)  #I mean d/dr(omega^2)
    kappa = np.sqrt(r * drdo2 + 4.0 * o2)

    #Allocate arrays for output
    omega_Lo = np.zeros((m_max, l_max))
    omega_Li = np.zeros((m_max, l_max))
    o_c = np.zeros(l_max)

    #Find resonance angular frequency
    for m in range(m_min, m_max + 1):
        for l in range(l_min, l_max + 1):
            outer = omega_d + (float(l) / m) * kappa
            inner = omega_d - (float(l) / m) * kappa
            omega_Lo[m - m_min,
                     l - l_min] = omega_d[np.argmin(np.fabs(omega_b - outer))]
            omega_Li[m - m_min,
                     l - l_min] = omega_d[np.argmin(np.fabs(omega_b - inner))]

            #Find corotation resonance where omega_d ~ omega_b
            o_c[l - l_min] = omega_d[np.argmin(
                np.fabs(omega_d - omega_b / float(l)))]

    return omega_Li, omega_Lo, o_c, omega_d, kappa
Ejemplo n.º 8
0
def findCBResonances(s,r,r_min,r_max,m_max=4,l_max=4,bins=50):
    """
    Given Tipsy snapshot, computes the resonances of disk on binary as a function of orbital angular frequency omega.
    Disk radius, in au, is convered to angular frequency which will then be used to compute corotation 
    and inner/outer Lindblad resonances.
   
   Note: r given MUST correspond to r over which de/dt was calculated.  Otherwise, scale gets all messed up
 
     Parameters
     ----------
     s: Tipsy-format snapshot
     r: array
         radius array over which de/dt was calculated
     r_min,r_max: floats
         min/maximum disk radius for calculations (au)
     bins: int
         number of radial bins to calculate over
     m_max,l_max: ints
         maximum orders of (m,l) LR

    Returns
    -------
    Orbital frequency: numpy array
        for corotation and inner/outer resonances and radii as float and numpy arrays
    """
    stars = s.stars

    m_min = 1 #m >=1 for LRs, CRs
    l_min = 1 #l >=1 for LRs, CRs

    #Compute binary angular frequency
    #Strip units from all inputs
    #x1 = np.asarray(isaac.strip_units(stars[0]['pos']))
    #x2 = np.asarray(isaac.strip_units(stars[1]['pos']))
    #v1 = np.asarray(isaac.strip_units(stars[0]['vel']))
    #v2 = np.asarray(isaac.strip_units(stars[1]['vel']))
    #m1 = np.asarray(isaac.strip_units(stars[0]['mass']))
    #m2 = np.asarray(isaac.strip_units(stars[1]['mass']))
    x1 = stars[0]['pos']
    x2 = stars[1]['pos']
    v1 = stars[0]['vel']
    v2 = stars[1]['vel']
    m1 = stars[0]['mass']
    m2 = stars[1]['mass']
     
    a = isaac.strip_units(AddBinary.calcSemi(x1, x2, v1, v2, m1, m2))
    omega_b = 2.0*np.pi/AddBinary.aToP(a,m1+m2) #In units 1/day

    #Compute omega_disk in units 1/day (like omega_binary)
    omega_d = 2.0*np.pi/AddBinary.aToP(r,m1+m2)
        
    #Compute kappa (radial epicycle frequency = sqrt(r * d(omega^2)/dr + 4*(omega^2))
    o2 = omega_d*omega_d
    dr = (r.max()-r.min())/float(bins) #Assuming r has evenly spaced bins!
    drdo2 = np.gradient(o2,dr) #I mean d/dr(omega^2)
    kappa = np.sqrt(r*drdo2 + 4.0*o2)
   
    #Allocate arrays for output 
    omega_Lo = np.zeros((m_max,l_max))
    omega_Li = np.zeros((m_max,l_max))
    o_c = np.zeros(l_max)   
 
    #Find resonance angular frequency
    for m in range(m_min,m_max+1):
        for l in range(l_min,l_max+1):
            outer = omega_d + (float(l)/m)*kappa
            inner = omega_d - (float(l)/m)*kappa
            omega_Lo[m-m_min,l-l_min] = omega_d[np.argmin(np.fabs(omega_b-outer))]
            omega_Li[m-m_min,l-l_min] = omega_d[np.argmin(np.fabs(omega_b-inner))]

            #Find corotation resonance where omega_d ~ omega_b
            o_c[l-l_min] = omega_d[np.argmin(np.fabs(omega_d-omega_b/float(l)))]

    return omega_Li, omega_Lo, o_c, omega_d, kappa