def buildAllPlayerAverage(digits_to_round = 2):
    path = "../allPlayerAverage.csv"
    
    #taken from StatsGenerator (does not include non-numeric columns)
    columns = ["Name", "Margin", "Minutes", "FGA", "FGM", "3PA", "3PM", "Rebounds", "Assists", "Steals", "Blocks", "Turnovers", "Fouls", "Points"]
    
    playerNames = at.getPlayerNames()
    
    allPlayerAverage_dict = {}
    
    #feelin' loopy
    for name in playerNames:
        playerDataIndividual = {}
        for column in columns:
            
            if(column == "Name"):
                playerDataIndividual[column] = name
            else:
                average = at.getPlayerAverage(name, column, digits_to_round)
                playerDataIndividual[column] = average
        
        allPlayerAverage_dict[name] = playerDataIndividual
    
    with open(path, 'w', encoding='utf-8', newline='') as averageFile:
        averageFile.truncate(0)
        
        writer = csv.DictWriter(averageFile, fieldnames=columns)
        writer.writeheader()
        
        for name in playerNames:
            writer.writerow(allPlayerAverage_dict[name])
def plotSingleAxisTotal(Y,
                        numNames=10,
                        head=True,
                        sizeX=10,
                        sizeY=10,
                        type_of_chart="bar"):
    dataframe = at.getAllPlayerTotalDataFrame().sort_values(
        Y, ascending=not head).head(numNames)
    dataframe.plot(x="Name", y=Y, figsize=(sizeX, sizeY), kind=type_of_chart)
Ejemplo n.º 3
0
def categoryToWin_PlayerCorrelation(playerName, C, N, over=True, win=True, basedOnWins=True):
    df = at.getPlayerDataFrame(playerName)
    
    totalPlayed = len(df)
    totalWins = len(df.loc[df['Margin'] > 0])
    totalWins_withParams=categoryToWin_PlayerTotal(playerName, C, N, over=over, win=win)
    
    if(basedOnWins):
        return totalWins_withParams/totalWins
    else:
        return totalWins_withParams/totalPlayed
Ejemplo n.º 4
0
def categoryToWin_PlayerTotal(playerName, C, N, over=True, win=True):
    df = at.getPlayerDataFrame(playerName)
    #convoluted but the best way to do it - let's count!
    if(win):
        if(over):
            return len(df.loc[(df[C] > N) & (df['Margin'] > 0)])
        else:
            return len(df.loc[(df[C] < N) & (df['Margin'] > 0)])
    else:
        if(over):
            return len(df.loc[(df[C] > N) & (df['Margin'] < 0)])
        else:
            return len(df.loc[(df[C] < N) & (df['Margin'] < 0)])
def replaceAllInPlayerData(subject, target):
    names = at.getPlayerNames()
    
    for name in names:
        path = "../player_data/" + name + ".csv"
        
        new_file_content = ""
        
        #read and create string with new file
        fin = open(path, "r+", encoding='utf8')
        
        for line in fin:
            stripped_line = line.strip()
            new_line = stripped_line.replace(subject, target).replace(" ", "")
            new_file_content += new_line + "\n"
        
        fin.close()
        
        #delete contents and write back
        fout = open(path, "w", encoding='utf8')
        
        fout.truncate(0)
        fout.write(new_file_content)
        fout.close()