Ejemplo n.º 1
0
def main():
	if sys.argv[-1].startswith("usefs="): sys.argv = sys.argv[:-1]	# remove the runpar fileserver info

	(options,args) =  parse_command_line()
	
	if not options.nolog and (not mpi or (mpi and mpi.rank==0)): EMAN.appinit(sys.argv)

	inputParm = EMAN.ccmlInputParm()
	sf = EMAN.XYData()
	if options.sfFileName != "" :
		readsf = sf.readFile(options.sfFileName)
		if ((readsf == -1) and (options.verbose > 0)) :
			print "The file of scattering factor does NOT exist"
	inputParm.scateringFactor = sf

	startNumOfRawImages = options.startNumOfRawImages
	#endNumOfRawImages = options.endNumOfRawImages

	refImageFileName = args[-1]
	numOfRefImages = options.numOfRefImages
	solutionFile = options.solutionFile

	# write log info to .emanlog file so that eman program can browse the history
	if not options.nolog and (not mpi or (mpi and mpi.rank==0)): 
		pid = EMAN.LOGbegin(sys.argv)
		for f in args[0:-1]: EMAN.LOGInfile(pid,f)
		EMAN.LOGReffile(pid,args[-1])
		if options.solutionFile: EMAN.LOGOutfile(pid,options.solutionFile)
		if options.listFile: EMAN.LOGOutfile(pid,options.listFile)
		if options.mrcSolutionFile: EMAN.LOGOutfile(pid,options.mrcSolutionFile)

	inputParm.sym = options.sym
	inputParm.FFTOverSampleScale = options.FFTOverSampleScale
	inputParm.pftStepSize = options.pftStepSize
	inputParm.deltaR = options.deltaR
	inputParm.RMin = options.RMin
	inputParm.RMax = options.RMax
	inputParm.searchMode = options.searchMode
	inputParm.scalingMode = options.scalingMode
	inputParm.residualMode = options.residualMode
	inputParm.weightMode = options.weightMode
	# inputParm.rawImageFN will be set later
	inputParm.refImagesFN = refImageFileName
	inputParm.rawImageIniParmFN = options.rawImageIniParmFN
	inputParm.rawImagePhaseCorrected = options.phasecorrected

	inputParm.maxNumOfRun = options.maxNumOfRun
	inputParm.zScoreCriterion = options.zScoreCriterion
	inputParm.residualCriterion = options.residualCriterion
	inputParm.solutionCenterDiffCriterion = options.solutionCenterDiffCriterion
	inputParm.solutionOrientationDiffCriterion = options.solutionOrientationDiffCriterion/180.0*pi
	inputParm.maxNumOfIteration = options.maxNumOfIteration
	inputParm.numOfRandomJump = options.numOfRandomJump
	inputParm.numOfFastShrink = options.numOfFastShrink
	inputParm.numOfStartConfigurations = options.numOfStartConfigurations
	inputParm.orientationSearchRange = options.orientationSearchRange/180.0*pi
	inputParm.centerSearchRange = options.centerSearchRange

	inputParm.numOfRefImages = options.numOfRefImages
	inputParm.refEulerConvention = options.refEulerConvention
	#maskR = options.maskR
	#if (maskR<=0): maskR = refImageSizeY/2

	inputParm.verbose = options.verbose
	verbose = options.verbose
	#verboseSolution = options.verboseSolution

	updataHeader = options.updataHeader
	solutionFile = options.solutionFile
	mrcSolutionFile = options.mrcSolutionFile
	iniCenterOrientationMode = options.iniCenterOrientationMode
	refCenterOrientationMode = options.refCenterOrientationMode

	rawImages = []
	if not mpi or (mpi and mpi.rank==0):
		for imgfile in args[0:-1]:
			imgnum = EMAN.fileCount(imgfile)[0]
			for i in range(imgnum): rawImages.append((imgfile, i))
	if mpi: rawImages = mpi.bcast(rawImages)
	
	endNumOfRawImages = options.endNumOfRawImages
	if endNumOfRawImages <=0  or endNumOfRawImages > len(rawImages):
		endNumOfRawImages = len(rawImages)

	numRawImages = endNumOfRawImages - startNumOfRawImages

	if mpi:
		ptclset = range(startNumOfRawImages + mpi.rank, endNumOfRawImages, mpi.size)
	else:
		ptclset = range(startNumOfRawImages, endNumOfRawImages)
	
	solutions = []

	rMask = options.rMask        #mask size is given
	if options.rMask <= 0 : rMask = refImageSizeY/2   #mask size = half image size
	
	rMask1 = options.rMask1             #output tnf mask size is given
	if options.rMask1 <= 0 : rMask1 = rMask    #output tnf mask size = half image size

	inputParm.rMask = rMask
	inputParm.rMask1 = rMask1

	rawImage = EMAN.EMData()
	rawImage.getEuler().setSym(inputParm.sym) #set the symmetry of the raw partile
	inputParm.rawImageFN = rawImages[0][0] #give the initial raw particle filename
	print "start to prepare------"
	rawImage.crossCommonLineSearchPrepare(inputParm) #prepare, create pseudo PFT of ref images
	print "end to prepare------"
	inputParm.rawImage = rawImage
	#for rawImgSN in ptclset:
	for index in range(len(ptclset)):
		rawImgSN = ptclset[index]
		inputParm.rawImageFN = rawImages[rawImgSN][0]
		inputParm.thisRawImageSN = rawImages[rawImgSN][1]
		if mpi: print "rank %d: %d in %d-%d (%d in %d-%d)" % (mpi.rank, rawImgSN, startNumOfRawImages, endNumOfRawImages, index, 0, len(ptclset))
		#rawImage.readImage(rawImages[rawImgSN][0], rawImages[rawImgSN][1])

		#rawImage.applyMask(rMask, 6) #apply mask type 6 [edge mean value] to raw image, center will be image center
		#rawImage.getEuler().setSym("icos")
		#if rawImage.hasCTF() == 1:
			#ctfParm = rawImage.getCTF()
			#inputParm.zScoreCriterion = options.zScoreCriterion + atan(abs(ctfParm[0])-1.5)/(pi/4) +0.59 #adjust zScore criterion -0.6 --> +1.2, 1.5, 2.0
			#inputParm.numOfRefImages = int(min(numOfRefImages, max(numOfRefImages*exp(-(abs(ctfParm[0])/2.0-0.15))+0.5, 5.0))) # adjust maxNumOfRun, the min is 2

		inputParm.thisRawImageSN = rawImgSN

		solutionCenterDiffCriterion = inputParm.solutionCenterDiffCriterion
		solutionOrientationDiffCriterion = inputParm.solutionOrientationDiffCriterion

		#initialize Center And Orientation by ont of the following modes

		if iniCenterOrientationMode == "iniparmfile" :
			inputParm.initializeCenterAndOrientationFromIniParmFile() # need to set "refEulerConvention"
		elif iniCenterOrientationMode == "headerfile" :
			inputParm.initializeCenterAndOrientationFromParticle() # need to set "refEulerConvention"
		else :
			inputParm.initializeCenterAndOrientationFromRandom()  # default is random orientation and physical center

		#set the refence Center And Orientation by ont of the following modes

		if refCenterOrientationMode == "iniparmfile" : inputParm.setRefCenterAndOrientationFromIniParmFile() # need to set "refEulerConvention"
		elif refCenterOrientationMode == "headerfile" : inputParm.setRefCenterAndOrientationFromParticle() # need to set "refEulerConvention"
		else : inputParm.setRefCenterAndOrientationFromInitializedParms() # default is copy the initial center and orientation

		rawImage.crossCommonLineSearchReadRawParticle(inputParm) #create pseudo PFT of raw image

		maxNumOfRun = inputParm.maxNumOfRun
		outputParmList = []
		numOfRun = 0
		passAllConsistencyCriteria = 0
		while (numOfRun < maxNumOfRun) or (len(outputParmList) < 2):

			if (iniCenterOrientationMode != "iniparmfile") and (iniCenterOrientationMode != "headerfile") :
				inputParm.initializeCenterAndOrientationFromRandom()  # default is random orientation and physical center
			if (refCenterOrientationMode != "iniparmfile") and (refCenterOrientationMode != "headerfile") :
				inputParm.setRefCenterAndOrientationFromInitializedParms() # default is copy the initial center and orientation

			numOfRun = numOfRun + 1
			print "numOfRun = ", numOfRun

			############################################################################
			############ execute cross common line search for reference ################
			############################################################################
			outputParm  = rawImage.crossCommonLineSearch(inputParm)
			############################################################################
			# pass criteria check
			outputParmList.append(outputParm) #if passed criteria, e.g. zscore, residualThreshold, etc
			############################################################################

			outputParmList.sort(lambda x, y: cmp(x.residual, y.residual))

			############################################################################
			########################## consistency check ###############################
			############################################################################
			#passConsistencyCriteria = 0
			finalOutputParmList = []
			lowestResidualList = []
			lengthOfList = len(outputParmList)
			if lengthOfList < 2 : continue
			for i in range(lengthOfList-1):
				thisOutputParm = outputParmList[i]
				numOfPairsPassConsistencyCheck = 0
				for j in range(i+1,lengthOfList):
					refOutputParm = outputParmList[j]
					tmpOutputParm = EMAN.ccmlOutputParm() #create a new output parm object
					tmpOutputParm.rawImageSN = thisOutputParm.rawImageSN #copy all paramenters
					tmpOutputParm.residual = thisOutputParm.residual
					tmpOutputParm.sigma = thisOutputParm.sigma
					tmpOutputParm.verbose = thisOutputParm.verbose
					tmpOutputParm.zScore = thisOutputParm.zScore
					tmpOutputParm.zScoreCriterion = thisOutputParm.zScoreCriterion

					tmpOutputParm.passAllCriteria = 0
					tmpOutputParm.setCalculatedCenterAndOrientation(thisOutputParm.cx,thisOutputParm.cy,thisOutputParm.q)
					tmpOutputParm.setRefCenterAndOrientation(refOutputParm.cx, refOutputParm.cy, refOutputParm.q)
					tmpOutputParm.calculateDifferenceWithRefParm() #calculated the difference

					centerDiff = tmpOutputParm.centerDiff
					orientationDiff = tmpOutputParm.orientationDiff
					
					#####  FLIP CASE :  if no consistency found, try flip this orientation
					if ((centerDiff > solutionCenterDiffCriterion) or (orientationDiff > solutionOrientationDiffCriterion)) :
						quatFlip = EMAN.Quaternion(refOutputParm.q.getEuler().alt(), refOutputParm.q.getEuler().az(), refOutputParm.q.getEuler().phi()+pi)
						tmpOutputParm.setRefCenterAndOrientation(refOutputParm.cx, refOutputParm.cy, quatFlip)
						tmpOutputParm.calculateDifferenceWithRefParm() #calculated the difference
						centerDiff = tmpOutputParm.centerDiff
						orientationDiff = tmpOutputParm.orientationDiff
						tmpOutputParm.setRefCenterAndOrientation(refOutputParm.cx, refOutputParm.cy, refOutputParm.q) #set back the exact orientation of reference 

					#Save the configurations with lowest residuals
					if (i<3) and (j==i+1) : lowestResidualList.append(tmpOutputParm)
					
					#make the good/answers list
					if ((centerDiff < solutionCenterDiffCriterion) and (orientationDiff < solutionOrientationDiffCriterion)) :
						numOfPairsPassConsistencyCheck += 1
						if numOfPairsPassConsistencyCheck == 1 : #save to the final list
							tmpOutputParm.passAllCriteria = 1
							finalOutputParmList.append(tmpOutputParm)
						if i==0 and numOfPairsPassConsistencyCheck >= options.numConsistentRun: #if the first one, check whether it has 3 pair of consistencies
							passAllConsistencyCriteria = 1
							break
						if i>0 : break #if not the first one, find one pair of consistency, then break
				
				#no break here, just for saving all possible solutions

			if passAllConsistencyCriteria and len(finalOutputParmList) >= options.numConsistentRun: break #if 3 consistent pair orientations were found, then stop


		rawImage.crossCommonLineSearchReleaseParticle(inputParm) # release the memory related to this raw particle

		# if no consistency found, keep the lowest ones as output
		if len(finalOutputParmList) == 0 : finalOutputParmList = lowestResidualList
		for i in range(len(finalOutputParmList)) : 
			if passAllConsistencyCriteria : finalOutputParmList[i].passAllCriteria = 1
			else : finalOutputParmList[i].passAllCriteria = 0

		if options.solutionFile:
			for i in range(len(finalOutputParmList)) : finalOutputParmList[i].outputResult(solutionFile)

		outputParm = finalOutputParmList[0] #just use the lowest residual as regular output
		if outputParm.passAllCriteria: 	passfail = "pass"
		else: passfail = "fail"

		print "Final result: euler=%g\t%g\t%g\tcenter=%g\t%g\tresidue=%g\t%s" % (outputParm.alt*180/pi, outputParm.az*180/pi, outputParm.phi*180/pi, outputParm.cx, outputParm.cy, outputParm.residual, passfail)
		
		if options.scoreFile:
			rawImage.readImage(rawImages[rawImgSN][0], rawImages[rawImgSN][1], 1) # read header only
			if rawImage.hasCTF(): 
				defocus = rawImage.getCTF()[0]
		else:
			defocus = 0

		solution = (rawImages[rawImgSN][0], rawImages[rawImgSN][1], outputParm.alt, outputParm.az, outputParm.phi, \
					   outputParm.cx, outputParm.cy, defocus, outputParm.residual, outputParm.passAllCriteria)
		solutions.append( solution )

		sys.stdout.flush()

	rawImage.crossCommonLineSearchFinalize(inputParm) #finalize, i.e. delete memories

	if mpi:
		if options.verbose: 
			print "rank %d: done and ready to output" % (mpi.rank)
			sys.stdout.flush()
		mpi.barrier()
		#print "rank %d: %s" % (mpi.rank, solutions)
		if mpi.rank==0:
			for r in range(1,mpi.size):
				msg, status = mpi.recv(source = r, tag = r)
				solutions += msg
			def ptcl_cmp(x, y):
				eq = cmp(x[0], y[0])
				if not eq: return cmp(x[1],y[1])
				else: return eq
			solutions.sort(ptcl_cmp)
		else:
			mpi.send(solutions, 0, tag = mpi.rank)

	if not mpi or (mpi and mpi.rank==0):
		if options.scoreFile:
			sFile = open(options.scoreFile, "w")
			sFile.write("#LST\n")
			for i in solutions:
				if i[-1]: 
					sFile.write("%d\t%s\tdefocus=%g\tresidual=%g\n" % (i[1], i[0], i[7], i[8]))
			sFile.close()
			
		if options.listFile:
			lFile = open(options.listFile, "w")
			lFile.write("#LST\n")
			for i in solutions:
				if i[-1]: 
					lFile.write("%d\t%s\t%g\t%g\t%g\t%g\t%g\n" % (i[1], i[0], i[2]*180.0/pi, i[3]*180.0/pi, i[4]*180.0/pi, i[5], i[6]))
			lFile.close()
		if options.mrcSolutionFile:
			outFile = open(options.mrcSolutionFile, "w")
			for i in solutions:
				if i[-1]:
					#rawImage.readImage(i[0], i[1], 1)
					rawImage.readImage(i[0], i[1])
					thisEu = EMAN.Euler(i[2], i[3], i[4])
					thisEu.convertToMRCAngle()
					alt = thisEu.alt_MRC()*180.0/pi
					az  = thisEu.az_MRC()*180.0/pi
					phi = thisEu.phi_MRC()*180.0/pi
		
					cx  = i[5]
					cy  = i[6]
					dx = cx - rawImage.xSize()/2
					dy = cy - rawImage.ySize()/2
					rawImage.applyMask(rMask1,6,dx,dy,0) #apply mask type 4 [outside=0] to raw image, center will be the solved center
					#tnfFileName = "%s-%d.tnf" % (os.path.basename(os.path.splitext(rawImages[rawImgSN][0])[0]), rawImages[rawImgSN][1])
					prefix = os.path.dirname(options.mrcSolutionFile).replace(" ", "")
					if prefix != "" : prefix = prefix + "/"
					tnfFileName = "%s%s-%d.tnf" % (prefix,os.path.basename(os.path.splitext(i[0])[0]), i[1])
					rawFFT = rawImage.doFFT()
					rawFFT.writeImage(tnfFileName,0)  #tnf file no header information, it is a pure FFT of raw image file
		
					outFile.write("%s\n" % (os.path.abspath(tnfFileName)))
					outFile.write(" %d, %.4f, %.4f, %.4f, %.4f, %.4f, 0.0\n" % (0, alt, az, phi, cy, cx))
			outFile.close()
		if updataHeader:
			for i in solutions:
				rawImage.readImage(i[0], i[1], 1)
				if options.verbose:
					cx  = rawImage.get_center_x()
					cy  = rawImage.get_center_y()
					alt = rawImage.alt()
					az  = rawImage.az()
					phi = rawImage.phi()
					print "Update header: %s %d\t%7.5f  %7.5f  %7.2f  %7.2f  %7.2f => %7.5f  %7.5f  %7.2f  %7.2f  %7.2f" % \
						(i[0], i[1], alt*180.0/pi, az*180.0/pi, phi*180.0/pi, cx, cy, i[2]*180.0/pi, i[3]*180.0/pi, i[4]*180.0/pi, i[5], i[6])
				rawImage.setRAlign(i[2], i[3], i[4])
				rawImage.set_center_x(i[5])
				rawImage.set_center_y(i[6])
				imgtype = EMAN.EMData.ANY
				rawImage.writeImage(i[0], i[1], imgtype, 1)
	if not options.nolog and (not mpi or (mpi and mpi.rank==0)): EMAN.LOGend()
Ejemplo n.º 2
0
def main():
    EMAN.appinit(sys.argv)
    if sys.argv[-1].startswith("usefs="):
        sys.argv = sys.argv[:-1]  # remove the runpar fileserver info

    (options, rawimage, refmap) = parse_command_line()

    sffile = options.sffile
    verbose = options.verbose
    shrink = options.shrink
    mask = options.mask
    first = options.first
    last = options.last
    scorefunc = options.scorefunc

    projfile = options.projection
    output_ptcls = options.update_rawimage
    cmplstfile = options.cmplstfile
    ortlstfile = options.ortlstfile
    startSym = options.startSym
    endSym = options.endSym

    if not options.nocmdlog:
        pid = EMAN.LOGbegin(sys.argv)
        EMAN.LOGInfile(pid, rawimage)
        EMAN.LOGInfile(pid, refmap)
        if projfile:
            EMAN.LOGOutfile(pid, projfile)
        if output_ptcls:
            EMAN.LOGOutfile(pid, output_ptcls)
        if cmplstfile:
            EMAN.LOGOutfile(pid, cmplstfile)
        if ortlstfile:
            EMAN.LOGOutfile(pid, ortlstfile)

    ptcls = []
    if not (mpi or pypar) or ((mpi and mpi.rank == 0) or (pypar and pypar.rank == 0)):
        ptcls = EMAN.image2list(rawimage)
        ptcls = ptcls[first:last]

        print "Read %d particle parameters" % (len(ptcls))
        # ptcls = ptcls[0:10]

    if mpi and mpi.size > 1:
        ptcls = mpi.bcast(ptcls)
        print "rank=%d\t%d particles" % (mpi.rank, len(ptcls))
    elif pypar and pypar.size() > 1:
        ptcls = pypar.broadcast(ptcls)
        print "rank=%d\t%d particles" % (pypar.rank(), len(ptcls))

    if sffile:
        sf = EMAN.XYData()
        sf.readFile(sffile)
        sf.logy()

    if not mpi or ((mpi and mpi.rank == 0) or (pypar and pypar.rank() == 0)):
        if cmplstfile and projfile:
            if output_ptcls:
                raw_tmp = output_ptcls
            else:
                raw_tmp = rawimage
            raw_tmp = rawimage
            fp = open("tmp-" + cmplstfile, "w")
            fp.write("#LST\n")
            for i in range(len(ptcls)):
                fp.write("%d\t%s\n" % (first + i, projfile))
                fp.write("%d\t%s\n" % (first + i, raw_tmp))
            fp.close()
        if (mpi and mpi.size > 1 and mpi.rank == 0) or (pypar and pypar.size() > 1 and pypar.rank() == 0):
            total_recv = 0
            if output_ptcls:
                total_recv += len(ptcls)
            if projfile:
                total_recv += len(ptcls)
            for r in range(total_recv):
                # print "before recv from %d" % (r)
                if mpi:
                    msg, status = mpi.recv()
                else:
                    msg = pypar.receive(r)
                    # print "after recv from %d" % (r)
                    # print msg, status
                d = emdata_load(msg[0])
                fname = msg[1]
                index = msg[2]
                d.writeImage(fname, index)
                print "wrtie %s %d" % (fname, index)
            if options.ortlstfile:
                solutions = []
                for r in range(1, mpi.size):
                    msg, status = mpi.recv(source=r, tag=r)
                    solutions += msg

                def ptcl_cmp(x, y):
                    eq = cmp(x[0], y[0])
                    if not eq:
                        return cmp(x[1], y[1])
                    else:
                        return eq

                solutions.sort(ptcl_cmp)
    if (not mpi or (mpi and ((mpi.size > 1 and mpi.rank > 0) or mpi.size == 1))) or (
        not pypar or (pypar and ((pypar.size() > 1 and pypar.rank() > 0) or pypar.size() == 1))
    ):
        map3d = EMAN.EMData()
        map3d.readImage(refmap, -1)
        map3d.normalize()
        if shrink > 1:
            map3d.meanShrink(shrink)
        map3d.realFilter(0, 0)  # threshold, remove negative pixels

        imgsize = map3d.ySize()

        img = EMAN.EMData()

        ctffilter = EMAN.EMData()
        ctffilter.setSize(imgsize + 2, imgsize, 1)
        ctffilter.setComplex(1)
        ctffilter.setRI(1)

        if (mpi and mpi.size > 1) or (pypar and pypar.size() > 1):
            ptclset = range(mpi.rank - 1, len(ptcls), mpi.size - 1)
        else:
            ptclset = range(0, len(ptcls))

        if mpi:
            print "Process %d/%d: %d/%d particles" % (mpi.rank, mpi.size, len(ptclset), len(ptcls))

        solutions = []
        for i in ptclset:
            ptcl = ptcls[i]
            e = EMAN.Euler(ptcl[2], ptcl[3], ptcl[4])
            dx = ptcl[5] - imgsize / 2
            dy = ptcl[6] - imgsize / 2
            print "%d\talt,az,phi=%8g,%8g,%8g\tx,y=%8g,%8g" % (
                i + first,
                e.alt() * 180 / pi,
                e.az() * 180 / pi,
                e.phi() * 180 / pi,
                dx,
                dy,
            ),

            img.readImage(ptcl[0], ptcl[1])
            img.setTAlign(-dx, -dy, 0)
            img.setRAlign(0, 0, 0)
            img.rotateAndTranslate()  # now img is centered
            img.applyMask(int(mask - max(abs(dx), abs(dy))), 6, 0, 0, 0)
            if img.hasCTF():
                fft = img.doFFT()

                ctfparm = img.getCTF()
                ctffilter.setCTF(ctfparm)
                if options.phasecorrected:
                    if sffile:
                        ctffilter.ctfMap(64, sf)  # Wiener filter with 1/CTF (no sign) correction
                else:
                    if sffile:
                        ctffilter.ctfMap(32, sf)  # Wiener filter with 1/CTF (including sign) correction
                    else:
                        ctffilter.ctfMap(2, EMAN.XYData())  # flip phase

                fft.mult(ctffilter)
                img2 = fft.doIFT()  # now img2 is the CTF-corrected raw image

                img.gimmeFFT()
                del fft
            else:
                img2 = img

            img2.normalize()
            if shrink > 1:
                img2.meanShrink(shrink)
            # if sffile:
            # 	snrcurve = img2.ctfCurve(9, sf)	# absolute SNR
            # else:
            # 	snrcurve = img2.ctfCurve(3, EMAN.XYData())		# relative SNR

            e.setSym(startSym)
            maxscore = -1e30  # the larger the better
            scores = []
            for s in range(e.getMaxSymEl()):
                ef = e.SymN(s)
                # proj = map3d.project3d(ef.alt(), ef.az(), ef.phi(), -6)		# Wen's direct 2D accumulation projection
                proj = map3d.project3d(
                    ef.alt(), ef.az(), ef.phi(), -1
                )  # Pawel's fast projection, ~3 times faster than mode -6 with 216^3
                # don't use mode -4, it modifies its own data
                # proj2 = proj
                proj2 = proj.matchFilter(img2)
                proj2.applyMask(int(mask - max(abs(dx), abs(dy))), 6, 0, 0, 0)
                if scorefunc == "ncccmp":
                    score = proj2.ncccmp(img2)
                elif scorefunc == "lcmp":
                    score = -proj2.lcmp(img2)[0]
                elif scorefunc == "pcmp":
                    score = -proj2.pcmp(img2)
                elif scorefunc == "fsccmp":
                    score = proj2.fscmp(img2, [])
                elif scorefunc == "wfsccmp":
                    score = proj2.fscmp(img2, snrcurve)
                if score > maxscore:
                    maxscore = score
                    best_proj = proj2
                    best_ef = ef
                    best_s = s
                scores.append(score)
                # proj2.writeImage("proj-debug.img",s)
                # print "\tsym %2d/%2d: euler=%8g,%8g,%8g\tscore=%12.7g\tbest=%2d euler=%8g,%8g,%8g score=%12.7g\n" % \
                # 		   (s,60,ef.alt()*180/pi,ef.az()*180/pi,ef.phi()*180/pi,score,best_s,best_ef.alt()*180/pi,best_ef.az()*180/pi,best_ef.phi()*180/pi,maxscore)
            scores = Numeric.array(scores)
            print "\tbest=%2d euler=%8g,%8g,%8g max score=%12.7g\tmean=%12.7g\tmedian=%12.7g\tmin=%12.7g\n" % (
                best_s,
                best_ef.alt() * 180 / pi,
                best_ef.az() * 180 / pi,
                best_ef.phi() * 180 / pi,
                maxscore,
                MLab.mean(scores),
                MLab.median(scores),
                MLab.min(scores),
            )
            if projfile:
                best_proj.setTAlign(dx, dy, 0)
                best_proj.setRAlign(0, 0, 0)
                best_proj.rotateAndTranslate()

                best_proj.set_center_x(ptcl[5])
                best_proj.set_center_y(ptcl[6])
                best_proj.setRAlign(best_ef)
                # print "before proj send from %d" % (mpi.rank)

                if mpi and mpi.size > 1:
                    mpi.send((emdata_dump(best_proj), projfile, i + first), 0)
                elif pypar and pypar.size() > 1:
                    pypar.send((emdata_dump(best_proj), projfile, i + first), 0)
                # print "after proj send from %d" % (mpi.rank)
                else:
                    best_proj.writeImage(projfile, i + first)

            img2.setTAlign(0, 0, 0)
            img2.setRAlign(best_ef)
            img2.setNImg(1)
            # print "before raw send from %d" % (mpi.rank)
            if output_ptcls:
                if mpi and mpi.size > 1:
                    mpi.send((emdata_dump(img2), output_ptcls, i + first), 0)
                elif pypar and pypar.size() > 1:
                    pypar.send((emdata_dump(img2), output_ptcls, i + first), 0)
                # print "after raw send from %d" % (mpi.rank)
                else:
                    img2.writeImage(output_ptcls, i + first)

            solutions.append((ptcl[0], ptcl[1], best_ef.alt(), best_ef.az(), best_ef.phi(), ptcl[5], ptcl[6]))
        if mpi and (mpi.size > 1 and mpi.rank > 0):
            mpi.send(solutions, 0, tag=mpi.rank)

    if mpi:
        mpi.barrier()
    elif pypar:
        pypar.barrier()
    if mpi:
        mpi.finalize()
    elif pypar:
        pypar.finalize()

    if options.cmplstfile:
        os.rename("tmp-" + cmplstfile, cmplstfile)
    if options.ortlstfile:
        lFile = open(options.ortlstfile, "w")
        lFile.write("#LST\n")
        for i in solutions:
            lFile.write(
                "%d\t%s\t%g\t%g\t%g\t%g\t%g\n"
                % (i[1], i[0], i[2] * 180.0 / pi, i[3] * 180.0 / pi, i[4] * 180.0 / pi, i[5], i[6])
            )
        lFile.close()

    if not options.nocmdlog:
        EMAN.LOGend()