Ejemplo n.º 1
0
 def printTrisAngles(this):
     # TODO: fix this function. Which angles to take (ie which faces) depends
     # on the triangle alternative.
     tris = this.triFs[this.edgeAlternative]
     # for non 1 loose
     # for i in range(0, len(tris) - 2, 2):
     d = 2
     # for 1 loose:
     d = 1
     for i in range(2):
         norm0 = Geom3D.Triangle(
             this.baseShape.Vs[tris[i][0]],
             this.baseShape.Vs[tris[i][1]],
             this.baseShape.Vs[tris[i][2]],
         ).normal(True)
         print 'norm0 %d: ', norm0
         norm1 = Geom3D.Triangle(
             this.baseShape.Vs[tris[i + d][0]],
             this.baseShape.Vs[tris[i + d][1]],
             this.baseShape.Vs[tris[i + d][2]],
         ).normal(True)
         print 'norm1 %d: ', norm1
         inprod = norm0 * norm1
         print 'Tris angle %d: %.6f degrees' % (i, math.acos(inprod) *
                                                Geom3D.Rad2Deg)
     print '------------'  # TODO move out
Ejemplo n.º 2
0
    def setV(this):
        # input this.h
        St = this.h / (4*this.h - 1)
        if this.heptPosAlt:
            #
            #    z
            #     ^
            #     |
            #     ---> y
            #    /
            #   V_
            #  x
            #
            # There are vertices with more than one index, because the normals
            # will differ.
            #
            #          '-,
            #         /   '-,
            #        /       -.2
            #        |  5   -' \ 1, 11
            #       /   3.-' 0  '-
            #       |   /   4 8 __'-10
            #      / ,-'  __--""
            #     /,=---""  7
            #    6          9
            #
            # For tetrahedral position: 1, 3, and 5 are on the vertices of a
            # cube and 2, 4, 6, are on the face centres of that cube
            #
            Vs = [
                    vec( St,      St,     -St),        # 0
                    vec( 0.0,     1.0,     0.0),
                    vec( this.h,  this.h,  this.h),
                    vec( 1.0,     0.0,     0.0),       # 3

                    vec( St,      St,     -St),        # 4
                    vec( 1.0,     0.0,     0.0),
                    vec( this.h, -this.h, -this.h),
                    vec( 0.0,     0.0,    -1.0),       # 7

                    vec( St,      St,     -St),        # 8
                    vec( 0.0,     0.0,    -1.0),
                    vec(-this.h,  this.h, -this.h),
                    vec( 0.0,     1.0,     0.0)        # 11
                ]
            # Normals are set below, after calculating the heptagons
            #this.Ns = this.NsAlt
        else:
            #
            #    z
            #     ^
            #     |
            #     ---> y
            #    /
            #   V_
            #  x
            #
            # There are vertices with more than one index, because the normals
            # will differ.
            #
            #                    6
            #              9    /
            #          '-, 7   V_
            #         /   '-,
            #        /       -.0, 4, 8
            #        | 10   -' \ 3, 5
            #       /11,1.-'    '-
            #       |   /    2  __'-
            #      / ,-'  __--""
            #     /,=---""
            #
            #
            # For tetrahedral position: 1, 3, and 5 are on the vertices of a
            # cube and 2, 4, 6, are on the face centres of that cube
            #
            Vs = [
                    vec( this.h,  this.h,  this.h),    # 0
                    vec( 1.0,     0.0,     0.0),
                    vec( St,      St,     -St),
                    vec( 0.0,     1.0,     0.0),       # 3

                    vec( this.h,  this.h,  this.h),    # 4
                    vec( 0.0,     1.0,     0.0),
                    vec(-St,      St,      St),
                    vec( 0.0,     0.0,     1.0),       # 7

                    vec( this.h,  this.h,  this.h),    # 8
                    vec( 0.0,     0.0,     1.0),
                    vec( St,     -St,      St),
                    vec( 1.0,     0.0,     0.0)        # 11
                ]
            # Normals are set below, after calculating the heptagons
            #this.Ns = this.NsPref

        # add heptagons
        heptN = Heptagons.Kite2Hept(Vs[3], Vs[2], Vs[1], Vs[0])
        if heptN == None:
          this.errorStr = 'No valid equilateral heptagon for this position'
          return
        else:
          this.errorStr = ''
        Vs.extend(heptN[0]) # V12 - V18
        Ns = range(33)
        for i in range(4):
            Ns[i] = heptN[1]
        for i in range(12, 19):
            Ns[i] = heptN[1]
        heptN = Heptagons.Kite2Hept(Vs[7], Vs[6], Vs[5], Vs[4])
        Vs.extend(heptN[0]) # V19 - V25
        for i in range(4, 8):
            Ns[i] = heptN[1]
        for i in range(19, 26):
            Ns[i] = heptN[1]
        heptN = Heptagons.Kite2Hept(Vs[11], Vs[10], Vs[9], Vs[8])
        Vs.extend(heptN[0]) # V26 - V32
        for i in range(8, 12):
            Ns[i] = heptN[1]
        for i in range(26, 33):
            Ns[i] = heptN[1]

        # add equilateral triangles:
        Vs.extend([Vs[15], Vs[22], Vs[29]])         # V33 - V35
        # add isosceles triangles:
        this.xtraEs = []
        if this.triangleAlt:
            Vs.extend([Vs[13], Vs[14], Vs[32]]) # V36 - V38
            Vs.extend([Vs[20], Vs[21], Vs[18]]) # V39 - V41
            Vs.extend([Vs[27], Vs[28], Vs[25]]) # V42 - V44
            if this.addXtraEdge:
                this.xtraEs = [36, 38, 39, 41, 42, 44]
        else:
            Vs.extend([Vs[13], Vs[14], Vs[14]]) # V36 - V38
            Vs.extend([Vs[20], Vs[21], Vs[21]]) # V39 - V41
            Vs.extend([Vs[27], Vs[28], Vs[28]]) # V42 - V44
            if this.heptPosAlt:
                v = Vs[38]
                Vs[38] = vec(-v[0],  v[1], -v[2])    # Hy * V9
                v = Vs[41]
                Vs[41] = vec( v[0], -v[1], -v[2])    # Hx * V23
            else:
                v = Vs[38]
                Vs[38] = vec( v[0], -v[1], -v[2])    # Hx * V9
                v = Vs[41]
                Vs[41] = vec(-v[0],  v[1], -v[2])    # Hy * V23
            v = Vs[44]
            Vs[44] = vec(-v[0], -v[1],  v[2])    # Hz * V16
            if this.addXtraEdge:
                this.xtraEs = [37, 38, 40, 41, 43, 44]

        # normal of equilateral triangle
        for i in range(3):
            Ns.append(Vs[0])
        # normal of isosceles triangles
        for i in range(3):
            o = 36 + 3*i
            IsoscelesTriangleN = Geom3D.Triangle(
                Vs[o],
                Vs[o+1],
                Vs[o+2]
            ).normal()
            Ns.extend([IsoscelesTriangleN, IsoscelesTriangleN, IsoscelesTriangleN])

        this.xtraFs = [
                [33, 34, 35],
                [36, 37, 38],
                [39, 40, 41],
                [42, 43, 44]
            ]

        this.setBaseVertexProperties(Vs = Vs, Ns = Ns)
        Fs = []
        Es = []
        colIds = []
        if this.showKite:
            Fs.extend(this.kiteFs)
            Es.extend(this.kiteEs)
            colIds.extend(this.kiteColIds)
        if this.showHepta:
            Fs.extend(this.heptFs)
            Es.extend(this.heptEs)
            colIds.extend(this.heptColIds)
        if this.showXtra:
            Fs.extend(this.xtraFs)
            Es.extend(this.xtraEs)
            colIds.extend(this.xtraColIds)
        this.setBaseEdgeProperties(Es = Es)
        this.setBaseFaceProperties(Fs = Fs, colors = (this.theColors, colIds))
Ejemplo n.º 3
0
    def setV(this):
        # input this.h
        St = this.h / (2*this.h - 1)
        if this.heptPosAlt:
            #
            #    z
            #     ^
            #     |
            #     ---> y
            #    /
            #   V_
            #  x
            #
            #         .------------.
            #       ,'   2 _____1,'|
            #     ,'     ,'    ,'11|
            #    .-----3.----0'  | |
            #    |     5|    4|8 | |
            #    |      |     | ,' |
            #    |      +-----+' 10-
            #    |     6     7|9 ,'
            #    |            |,'
            #    '------------'
            #
            Vs = [
                    vec(St,     St,      St),    # 0
                    vec(0.0,    1.0,    1.0),
                    vec(0.0,    0.0,    this.h),
                    vec(1.0,    0.0,    1.0),    # 3

                    vec(St,     St,      St),    # 4
                    vec(1.0,    0.0,    1.0),
                    vec(this.h, 0.0,    0.0),
                    vec(1.0,    1.0,    0.0),    # 7

                    vec(St,     St,      St),    # 8
                    vec(1.0,    1.0,    0.0),
                    vec(0.0,    this.h, 0.0),
                    vec(0.0,    1.0,    1.0)     # 11
                ]
        else:
            #
            #    z
            #     ^
            #     |
            #     ---> y
            #    /
            #   V_
            #  x
            #
            #         .------------.
            #       ,'   0 _____3,'|
            #     ,'     ,'    ,'|9|
            #    .-----1.----2'  | |
            #    |     7|    6|10| |
            #    |      |     | ,' |
            #    |      +-----+' 8 -
            #    |     4     5|11,'
            #    |            |,'
            #    '------------'
            #
            Vs = [
                    vec(0.0,    0.0,    this.h), # 0
                    vec(1.0,    0.0,    1.0),
                    vec(St,     St,      St),
                    vec(0.0,    1.0,    1.0),    # 3

                    vec(this.h, 0.0,    0.0),    # 4
                    vec(1.0,    1.0,    0.0),
                    vec(St,     St,      St),
                    vec(1.0,    0.0,    1.0),    # 7

                    vec(0.0,    this.h, 0.0),    # 8
                    vec(0.0,    1.0,    1.0),
                    vec(St,     St,      St),
                    vec(1.0,    1.0,    0.0),    # 11
                ]

        # add heptagons
        heptN = Heptagons.Kite2Hept(Vs[3], Vs[2], Vs[1], Vs[0])
        if heptN == None:
          this.errorStr = 'No valid equilateral heptagon for this position'
          return
        else:
          this.errorStr = ''
        Vs.extend(heptN[0]) # V12 - V18
        Ns = range(33)
        for i in range(4):
            Ns[i] = heptN[1]
        for i in range(12, 19):
            Ns[i] = heptN[1]
        heptN = Heptagons.Kite2Hept(Vs[7], Vs[6], Vs[5], Vs[4])
        Vs.extend(heptN[0]) # V19 - V25
        for i in range(4, 8):
            Ns[i] = heptN[1]
        for i in range(19, 26):
            Ns[i] = heptN[1]
        heptN = Heptagons.Kite2Hept(Vs[11], Vs[10], Vs[9], Vs[8])
        Vs.extend(heptN[0]) # V26 - V32
        for i in range(8, 12):
            Ns[i] = heptN[1]
        for i in range(26, 33):
            Ns[i] = heptN[1]

        xtraEs = []
        # add extra faces:
        if this.heptPosAlt:
            # Eql triangle
            Vs.extend([Vs[15], Vs[22], Vs[29]])         # V33 - V35
            # Isosceles triangles
            if this.triangleAlt:
                Vs.extend([Vs[13], Vs[14], Vs[32]]) # V36 - V38
                Vs.extend([Vs[20], Vs[21], Vs[18]]) # V39 - V41
                Vs.extend([Vs[27], Vs[28], Vs[25]]) # V42 - V44
            else:
                v = Vs[14]
                Vs.extend([Vs[13], Vs[14], vec(-v[0],  v[1],  v[2])]) # V36 - V38
                v = Vs[21]
                Vs.extend([Vs[20], Vs[21], vec( v[0], -v[1],  v[2])]) # V39 - V41
                v = Vs[28]
                Vs.extend([Vs[27], Vs[28], vec( v[0],  v[1], -v[2])]) # V42 - V44

            for i in range(3):
                Ns.append(Vs[0]) # N33 - N35
            # normals for the isosceles triangles:
            # N36 - N38, N39 - N41 and N42 - N44
            for i in range(3):
                o = 36 + 3*i
                IsoscelesTriangleN = Geom3D.Triangle(
                    Vs[o],
                    Vs[o+1],
                    Vs[o+2]
                ).normal()
                Ns.extend([IsoscelesTriangleN, IsoscelesTriangleN, IsoscelesTriangleN])

            xtraFs = [
                    # Eql triangle
                    [33, 34, 35],
                    # Isosceles triangles
                    [36, 37, 38],
                    [39, 40, 41],
                    [42, 43, 44],
                ]
            this.xtraColIds = [2 for i in range(4)]
            if this.addXtraEdge:
                if this.triangleAlt:
                    xtraEs = [36, 38, 39, 41, 42, 44]
                else:
                    xtraEs = [37, 38, 40, 41, 43, 44]
        else:
            # The Squares, divided into rectangular isosceles triangles,
            # because of the sym-op
            Vs.extend([Vs[15], Vs[16], vec(0, 0, Vs[15][2])]) # V33 - V35
            Vs.extend([Vs[22], Vs[23], vec(Vs[22][0], 0, 0)]) # V36 - V38
            Vs.extend([Vs[29], Vs[30], vec(0, Vs[29][1], 0)]) # V39 - V41
            # add isosceles triangles:
            if this.triangleAlt:
                v = Vs[13]
                Vs.extend([Vs[13], Vs[14], vec(v[0], -v[1], v[2])]) # V42 - V44
                v = Vs[20]
                Vs.extend([Vs[20], Vs[21], vec(v[0], v[1], -v[2])]) # V45 - V47
                v = Vs[27]
                Vs.extend([Vs[27], Vs[28], vec(-v[0], v[1], v[2])]) # V48 - V50
            else:
                Vs.extend([Vs[13], Vs[14], Vs[24]]) # V42 - V44
                Vs.extend([Vs[20], Vs[21], Vs[31]]) # V45 - V47
                Vs.extend([Vs[27], Vs[28], Vs[17]]) # V48 - V50

            # normals for the equilateral triangles:
            for i in range(3):
                Ns.append(Vs[0])  # N33 - N35
            for i in range(3):
                Ns.append(Vs[4])  # N36 - N38
            for i in range(3):
                Ns.append(Vs[8]) # N39 - N41
            # normals for the isosceles triangles:
            # N42 - N44, N45 - N47 and N48 - N50
            for i in range(3):
                o = 42 + 3*i
                IsoscelesTriangleN = Geom3D.Triangle(
                    Vs[o],
                    Vs[o+1],
                    Vs[o+2]
                ).normal()
                Ns.extend([IsoscelesTriangleN, IsoscelesTriangleN, IsoscelesTriangleN])

            xtraFs = [
                    # square parts:
                    [33, 34, 35],
                    [36, 37, 38],
                    [39, 40, 41],
                    # isosceles triangles:
                    [42, 43, 44],
                    [45, 46, 47],
                    [48, 49, 50]
                ]
            this.xtraColIds = [2 for i in range(6)]
            if this.addXtraEdge:
                if this.triangleAlt:
                    xtraEs = [42, 44, 45, 47, 48, 50]
                else:
                    xtraEs = [43, 44, 46, 47, 49, 50]

        #this.showBaseOnly = True
        this.setBaseVertexProperties(Vs = Vs, Ns = Ns)
        Fs = []
        Es = []
        colIds = []
        if this.showKite:
            Fs.extend(this.kiteFs)
            Es.extend(this.kiteEs)
            colIds.extend(this.kiteColIds)
        if this.showHepta:
            Fs.extend(this.heptFs)
            Es.extend(this.heptEs)
            colIds.extend(this.heptColIds)
        if this.showXtra:
            Fs.extend(xtraFs)
            Es.extend(xtraEs)
            colIds.extend(this.xtraColIds)
        this.setBaseEdgeProperties(Es = Es)
        this.setBaseFaceProperties(Fs = Fs, colors = (this.theColors, colIds))
Ejemplo n.º 4
0
    def setV(this):
        # input this.h
        St = this.h / (Dtau2 * V3 * this.h - 3)
        #print 's', St
        #
        #                  0
        #           __..--'-_
        #      3 -''    .    _"- 1
        #         \       _-'
        #          \   _-'
        #           \-'
        #           2
        #
        #    z    y
        #     ^ 7\
        #     |/
        #     ---> x
        #
        #
        # The kite above is a 5th of the top face of dodecahedron
        # standing on 1 face, 2 is a vertex, 1 and 3, centres of two edges
        # and 0 a face centre.
        #
        Vs = [
            vec(0.0, 0.0, this.h),  # 0
            Rl,
            vec(0.0, -Dtau2 * St, St),
            vec(-Rl[0], Rl[1], Rl[2])  # 3
        ]

        # add heptagons
        H = HalfTurn(Vs[3])
        this.errorStr = ''
        if not this.heptPosAlt:
            Ns = Vs
            heptN = Heptagons.Kite2Hept(Vs[3], Vs[0], Vs[1], Vs[2])
            if heptN == None:
                this.errorStr = 'No valid equilateral heptagon for this position'
                return
            Mr = Rot(axis=GeomTypes.Vec3(Vs[2]), angle=GeomTypes.turn(0.2))

            # p is a corner of the pentagon inside the pentagram
            # p is rotated 1/5th turn to form a triangle
            # together with 2 corners of the pentagram:
            # 5 of these triangles will cover the pentagram.
            # this is easier than finding the centre of the pentagram.
            v3 = heptN[0][3]
            v4 = heptN[0][4]
            p = v3 + (v4 - v3) / tau
            v = Mr * p
            if this.triangleAlt:
                vt = heptN[0][6]
                xtraEdgeIndex = 15
            else:
                vt = heptN[0][5]
                xtraEdgeIndex = 14
            # A part that will form the regular pentagrams (with overlaps).
            RegularTrianglePartV = [
                heptN[0][3],
                heptN[0][4],
                vec(v[0], v[1], v[2]),
            ]
            RegularTrianglePartN = Vs[2]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [heptN[0][5], heptN[0][6], vt]
        else:
            heptN = Heptagons.Kite2Hept(Vs[1], Vs[2], Vs[3], Vs[0])
            if heptN == None:
                this.errorStr = 'No valid equilateral heptagon for this position'
                return
            if this.triangleAlt:
                vt = heptN[0][1]
                xtraEdgeIndex = 14
            else:
                vt = heptN[0][2]
                xtraEdgeIndex = 15
            # One third of regular triangle.
            RegularTrianglePartV = [
                heptN[0][3],
                heptN[0][4],
                vec(0, 0, heptN[0][3][2]),
            ]
            RegularTrianglePartN = RegularTrianglePartV[2]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [heptN[0][1], heptN[0][2], vt]
        if heptN == None:
            this.errorStr = 'No valid equilateral heptagon for this position'
            return
        else:
            this.errorStr = ''
        vt = H * vt
        # rotate vt by a half turn, IsoscelesTriangleV NOT auto updated.
        IsoscelesTriangleV[2] = vt
        Vs.extend(heptN[0])  # V4 - V10, the heptagon
        Vs.extend(RegularTrianglePartV)  # V11 - V13
        Vs.extend(IsoscelesTriangleV)  # V14 - V16
        #for V in Vs: print V
        #h = heptN[1]
        #Ns = [[-h[0], -h[1], -h[2]] for i in range(11)]
        Ns = [heptN[1] for i in range(11)]
        Ns.extend([RegularTrianglePartN for i in range(3)])
        IsoscelesTriangleN = Geom3D.Triangle(IsoscelesTriangleV[0],
                                             IsoscelesTriangleV[1],
                                             IsoscelesTriangleV[2]).normal()
        Ns.extend([IsoscelesTriangleN for i in range(3)])
        this.xtraEs = []
        if this.addXtraEdge:
            this.xtraEs = [xtraEdgeIndex, 16]

        #this.showBaseOnly = True
        this.setBaseVertexProperties(Vs=Vs, Ns=Ns)
        Fs = []
        Es = []
        colIds = []
        if this.showKite:
            Fs.extend(this.kiteFs)
            Es.extend(this.kiteEs)
            colIds.extend(this.kiteColIds)
        if this.showHepta:
            Fs.extend(this.heptFs)
            Es.extend(this.heptEs)
            colIds.extend(this.heptColIds)
        if this.showXtra:
            Fs.extend(this.xtraFs)
            Es.extend(this.xtraEs)
            colIds.extend(this.xtraColIds)
        this.setBaseEdgeProperties(Es=Es)
        this.setBaseFaceProperties(Fs=Fs, colors=(this.theColors, colIds))
        this.Vs = Vs
Ejemplo n.º 5
0
    def setV(this):
        # input this.h
        St = this.h / (4 - tau2 - (4 * this.h / tau2))
        #    z
        #     ^
        #     |
        #     ---> y
        #    /
        #   V_
        #  x
        #                  2
        #           __..--'-_
        #      1 -''    .    _"- 3
        #         \       _-'
        #          \   _-'
        #           \-'
        #           0
        #
        # The kite above is a 5th of the top face of dodecahedron
        # standing on 1 face, 2 is a vertex, 1 and 3, centres of two edges
        # and 0 a face centre.
        #
        Vs = [
                vec(0.0,      0.0,    this.h),   # 0
                vec(-tau2/2, -w,      tau2),
                vec(2.0*St,   0.0,   -tau2*St),
                vec(-tau2/2,  w,      tau2)      # 3
            ]

        # add heptagons
        Ns = Vs
        if this.heptPosAlt:
            heptN = Heptagons.Kite2Hept(Vs[3], Vs[0], Vs[1], Vs[2])
            if heptN == None: return
            Mr = Rot(angle = GeomTypes.tTurn, axis = Vs[2])

            v = Mr*heptN[0][4]
            if this.triangleAlt:
                vt = heptN[0][6]
                xtraEdgeIndex = 15
            else:
                vt = heptN[0][5]
                xtraEdgeIndex = 14
            #print v
            # One third of regular triangle.
            RegularTrianglePartV = [
                        heptN[0][3],
                        heptN[0][4],
                        vec(v[0], v[1], v[2]),
                    ]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [
                        heptN[0][5],
                        heptN[0][6],
                        vt
                    ]
        else:
            heptN = Heptagons.Kite2Hept(Vs[1], Vs[2], Vs[3], Vs[0])
            if heptN == None: return
            if this.triangleAlt:
                vt = heptN[0][1]
                xtraEdgeIndex = 14
            else:
                vt = heptN[0][2]
                xtraEdgeIndex = 15
            # One third of regular pentagon.
            RegularTrianglePartV = [
                        heptN[0][3],
                        heptN[0][4],
                        vec(0, 0, heptN[0][3][2]),
                    ]
            # vt is the vertex that will be projected by a half turn on the
            # third vertex of the isosceles triangle.
            IsoscelesTriangleV = [
                        heptN[0][1],
                        heptN[0][2],
                        vt
                    ]
        if heptN == None:
            this.errorStr = 'No valid equilateral heptagon for this position'
            return
        else:
            this.errorStr = ''
        H = HalfTurn(Vs[3])
        vt = H * vt
        IsoscelesTriangleV[2] = vt
        Vs.extend(heptN[0]) # V4 - V10
        Vs.extend(RegularTrianglePartV) # V11 - V13
        Vs.extend(IsoscelesTriangleV) # V14 - V16
        #for V in Vs: print V
        Ns = [heptN[1] for i in range(11)]
        RegularTrianglePartN = RegularTrianglePartV[2]
        Ns.extend([RegularTrianglePartN for i in range(3)])
        IsoscelesTriangleN = Geom3D.Triangle(
                IsoscelesTriangleV[0],
                IsoscelesTriangleV[1],
                IsoscelesTriangleV[2]
            ).normal()
        Ns.extend([IsoscelesTriangleN for i in range(3)])
        this.xtraEs = []
        if this.addXtraEdge:
            this.xtraEs = [xtraEdgeIndex, 16]

        #this.showBaseOnly = True
        this.setBaseVertexProperties(Vs = Vs, Ns = Ns)
        Fs = []
        Es = []
        colIds = []
        if this.showKite:
            Fs.extend(this.kiteFs)
            Es.extend(this.kiteEs)
            colIds.extend(this.kiteColIds)
        if this.showHepta:
            Fs.extend(this.heptFs)
            Es.extend(this.heptEs)
            colIds.extend(this.heptColIds)
        if this.showXtra:
            Fs.extend(this.xtraFs)
            Es.extend(this.xtraEs)
            colIds.extend(this.xtraColIds)
        this.setBaseEdgeProperties(Es = Es)
        this.setBaseFaceProperties(Fs = Fs, colors = (this.theColors, colIds))
        this.Vs = Vs